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Abstract

Classification of brain tumors is essential in medical diagnostics, as
timely and precise identification can significantly enhance patient out-
comes. This study examines the efficacy of pre-trained deep learning
models in classifying brain MRI images into four categories: pituitary,
meningioma, glioma, and no tumor, with the aim of automating and en-
hancing the diagnostic process. We utilized a publically accessible MRI
dataset comprising 7,023 pictures of brain tumors. Alongside compre-
hensive image preprocessing and data augmentation, transfer learning
was employed to enhance the performance of four sophisticated convolu-
tional neural network architectures: DenseNet121, ResNet50, Xception,
and MobileNet. The models were successfully refined by transfer learn-
ing, reducing computational requirements while enhancing classification
precision. DenseNet121 surpassed Xception, MobileNet, and ResNet50
in the evaluated models, attaining the greatest accuracy of 98.47% and
an F1 score of 98.47%. The models’ appropriateness for clinical ap-
plication was validated by their robust generalization and consistent
performance across critical assessment parameters. To enhance mem-
ory for particular tumor classifications and render deep learning predic-
tions more interpretable in medical settings, further developments are
required.

1 Introduction

Brain tumors are among the most severe and possibly lethal conditions, consistently resulting in signif-
icant neurological deficits and a diminished quality of life. Primary tumors arise in the brain, whereas
secondary tumors result from cancers that have metastasized from other regions of the body. These
tumors are categorized into two primary classifications. Gliomas, meningiomas, and pituitary tumors
are the predominant categories of primary brain neoplasms, each presenting distinct challenges for
diagnosis and management [1]. Meningiomas and pituitary tumors, although prevalent, can pose sig-
nificant risks if undetected. Recent improvements in digital image processing and medical imaging
have facilitated the extensive adoption of computer-aided diagnosis (CAD). The MRI approach is pre-
ferred in diagnostic systems of this nature as it does not expose patients to ionizing radiation and can
accurately detect blood flow in veins. The utilization of extensive medical imaging datasets, such as
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Brain MRI scans, for the identification of brain tumors may be enhanced by the application of machine
learning and deep learning techniques [2].

Developing a machine learning and deep learning model is a multifaceted process that necessitates
training with a substantial volume of medical imaging data [3, 4]. This is essential for obtaining accu-
rate predictions or insights from the model, which is crucial for making proper therapeutic decisions.
This study examines the identification of brain tumors via deep learning and machine learning ap-
proaches. The duration required to evaluate a tumor is contingent upon the radiologist’s proficiency
and expertise. Nonetheless, the procedure for tumor identification is both inaccurate and costly [5, 6].
Misdiagnosing a brain tumor can substantially diminish a patient’s survival chances, leading to severe
complications. The MRI technology is increasingly favored as a remedy for the constraints of human
diagnosis. Recent advancements in machine learning, especially in deep learning, have facilitated the
discovery and classification of patterns in medical imaging [7]. Achievements in this domain encompass
the capability to retrieve and extract knowledge from data rather than relying on experts or scholarly
literature. Machine learning is swiftly emerging as a valuable instrument for enhancing performance
across many medical applications, including illness prognosis and diagnosis, molecular and cellular
structure identification, tissue segmentation, and picture categorization [6–8].

In the analysis of extensive datasets or nuanced imaging characteristics, conventional diagnostic
methods predominantly depend on expert interpretation, which may be subjective and susceptible to
inaccuracies [8]. This method might be automated using deep learning systems, facilitating a faster,
more reliable, and potentially more accurate diagnosis. These technologies are becoming recognized as
valuable tools to aid clinicians in making timely and informed treatment decisions [9] as shown in Figure
1. The primary objective of this work is to enhance the accuracy and efficiency of brain tumor detection

Figure 1: Sample Images.

from MRI scans through the application of deep learning and transfer learning techniques. This
study aims to develop and evaluate automated classification models capable of properly distinguishing
among four categories—glioma, meningioma, pituitary tumor, and no tumor—utilizing a publically
available Brain Tumor MRI dataset [10]. A comprehensive comparison is conducted on the classification
performance of the most advanced pre-trained CNN architectures, including DenseNet121, ResNet50,
Xception, and MobileNet [11].

This paper chiefly contributes the following:

• Utilization of transfer learning with prominent pre-trained CNN models to classify brain MRI
images, targeting swift, precise, and uniform outcomes.

• Methodical evaluation of DenseNet121, ResNet50, Xception, and MobileNet architectures for
multi-class brain tumor classification.

• Thorough assessment of model efficacy on a four-class MRI dataset, utilizing metrics such as
accuracy, precision, recall, and F1-score.

• Advocacy for automated deep learning-based classification systems to facilitate clinical decision-
making, diminish diagnostic variability, and improve patient care.
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2 Related Literature

The domain of automated brain tumor detection and classification utilizing MRI images has swiftly
advanced, with deep learning and hybrid machine learning methodologies leading contemporary re-
search efforts. Numerous studies have concentrated on enhancing accuracy, robustness, computing
efficiency, and clinical application through the utilization of sophisticated neural network topologies,
transfer learning, and novel preprocessing techniques.

A notable trend in the literature is the implementation of privacy-preserving and decentralized
learning frameworks. The FL-SiCNN model incorporates a Siamese Convolutional Neural Network
into a peer-to-peer federated learning framework, eliminating the necessity for a central server and
attaining 98.78% accuracy in multi-class brain tumor classification, while safeguarding data privacy
and demonstrating resilience against data poisoning attacks [12]. Hybrid methodologies that integrate
deep feature extraction (utilizing ResNet101 and DenseNet121), dimensionality reduction (PCA), and
Random Forest classification have exhibited remarkable efficacy and versatility across several noisy
MRI datasets, with accuracy levels of up to 99.7% [13].

Advanced deep learning architectures have been investigated to capture both spatial and temporal
aspects in MRI data. A four-stage pipeline integrating adaptive filtering, enhanced K-means clustering,
GLCM feature extraction, and Recurrent Convolutional Neural Networks (RCNN) attained 95.17%
accuracy, 98.42% sensitivity, and 89.28% specificity, surpassing conventional models such as BP and
U-Net [14]. Parallel Deep Convolutional Neural Networks (PDCNN) have been introduced to enhance
spatial feature extraction by processing MRI data via multiple pipelines, leading to superior feature
learning and less overfitting, with an accuracy of 96.29% reported [15] as shown in Figure 2. Transfer

Figure 2: Architecture Representation.

learning utilizing pre-trained models is essential for achieving high-performance systems. Fine-tuned
ResNet50 and EfficientNet models have consistently produced robust outcomes, with ResNet50-based
systems attaining 98.5% accuracy and surpassing earlier architectures like VGG16 and InceptionV3
[16]. EfficientNet, when integrated with sophisticated preprocessing techniques (contrast enhancement,
saliency maps) and Extreme Learning Machines (ELM), has demonstrated strong generalization and
accuracy across many public datasets [17]. Lightweight models such as MobileNet and RetinaNet
provide real-time tumor identification on medical edge devices, achieving a balance between computing
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economy and high detection accuracy—an indispensable characteristic for implementation in resource-
constrained clinical environments [18].

Extensive evaluations in the domain highlight that deep learning models, especially 3D CNNs and
attention-based architectures, surpass conventional machine learning methods in segmentation and
classification tasks [19]. The incorporation of sophisticated preprocessing techniques (e.g., equalization,
homomorphic filtering), attention mechanisms (CBAM), and hybrid architectures (EfficientNetB2 with
equalization) has elevated detection and classification accuracy to 99% in certain studies [20].

The application of multi-modal MRI data and hybrid systems integrating deep learning with ma-
chine learning classifiers, such as SVM, has been investigated to enhance segmentation and classification
precision. A system employing a bespoke 17-layer CNN for segmentation, alongside MobileNetV2 for
feature extraction and a multi-class SVM, attained a segmentation accuracy of 97.47% and a classifi-
cation accuracy of 98.92% [21]. From a scientific perspective, tumor diagnosis via medical imaging is
flawed and significantly reliant on the radiologist’s expertise. Moreover, the application of these tech-
nologies facilitates precise and errorless tumor diagnosis, enabling differentiation from other analogous
disorders. The aim of artificial intelligence (AI) is to develop machines that function and operate sim-
ilarly to humans [22]. Brain tumors present a considerable diagnostic challenge compared to cancers
originating in other organs of the human body. Due to the brain’s

3 Methodology

This section offers an extensive analysis of the identification of MRI brain tumors through the applica-
tion of deep learning and machine learning algorithms. The advancement of the proposed methodology.
Initially, MRI brain tumor data were acquired and preprocessed using ACEA and the median filter
to eliminate noise. To segment the MRI brain pictures, a fuzzy c-means approach is employed, and
a GLCM matrix is utilized to extract the image features. The EDN-SVM method is subsequently
employed to categorize images of healthy and tumorous brain tissue. In our work, an input image
measuring 32 × 32 pixels was processed by an initial convolutional layer with 16 filters, resulting in a
32 × 32 × 16 feature map, utilizing a kernel size of 3 × 3 to identify the most general characteristics.
The output of the convolutional layer was subsequently sent to a max-pooling layer feature map mea-
suring 15 × 15 × 16, effectively reducing the spatial data size for the following layer by fifty percent [23].
The max-pooling process identifies the maximum elements or pixels from the region of the feature map
that the filter has encompassed. The output was subsequently input into an additional convolutional
layer using 32 filters and a 13 × 13 × 32 feature map, utilizing a 3 × 3 kernel size. Subsequently, the
output was transmitted to the max-pooling layer feature map of 6 × 6 × 32 to reduce the spatial data
for the subsequent layer by fifty percent. A further convolutional layer was followed by an additional
pooling layer. A categorical cross-entropy loss function was computed in conjunction with the Adam
optimizer to determine the loss value. as shown in Figure 3.

3.1 Dataset Analysis and Partitioning

We employ a dataset available on the Kaggle open data platform to assess the efficacy of the proposed
architectural design. This dataset has 255 T1-weighted MRI scans. It comprises 98 MRI slices derived
from healthy brain tissue and 155 MRI slices obtained from tumorous brain tissue. Due to the distinct
dimensions of each image, we had to modify them to conform to our image specifications. A segment
of the dataset utilized for our analysis. The dimensions of the photos differ in width and height.
Classifying healthy brain tissue and tumorous brain tissue in MRI brain scans of varying heights
and widths may prove challenging. Consequently, prior to advancing to the preprocessing stage, we
standardize the photos by ensuring their width and height are same. The testing set comprises 306
meningioma images, 300 glioma images, 300 pituitary images, and 405 non-tumor images. The training
dataset comprises 1,595 non-tumor photos, 1,457 pituitary images, 1,339 meningioma images, and
1,321 glioma images. This rather consistent distribution across categories enables more precise and
equitable comparisons of model performances. Moreover, the diversity of tumor types ensures that
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Figure 3: Loss and accuracy curves.

any classification model is assessed in a manner that reflects real clinical conditions, enhancing its
application and significance.

3.2 Data Preparation

Prior to training, the MRI images underwent a systematic series of preprocessing techniques to ensure
optimal input quality for the deep learning models. To standardize the input dimensions and meet the
specifications of the selected convolutional neural network designs, all photos were initially reduced to
128 × 128 pixels. Subsequently, pixel values were normalized to a range of 0 to 1, enhancing stability
and accelerating convergence during model training. The original color channels of the images preserved
the comprehensive spatial and intensity information necessary for accurate tumor classification and
effective feature extraction as shown in Figure 4. .

Figure 4: Training and validation loss.

3.3 Data Augmentation

A variety of data augmentation techniques were employed on the training dataset to further improve
model generalization and mitigate the risk of overfitting. These additions encompassed shifting, zoom-
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ing, flipping in both orientations, and random rotations. The model encounters a broader range of
picture orientations and scales through the incorporation of these variances, effectively mirroring the
diversity seen in actual MRI data. This strategy enhances the accuracy of brain tumor classification
by augmenting the training set size and enabling the model to acquire more resilient and invariant
features.

3.4 Utilization of Pre-Trained Convolutional Neural Network Models

This design is particularly adept for medical image analysis as it addresses the vanishing gradient
problem and facilitates effective feature reuse [26, 27]. ResNet50 facilitates the training of profoundly
deep networks through the utilization of residual connections, enabling gradients to traverse the network
directly. The fifty-layer depth structure is engineered to acquire hierarchical characteristics, which are
essential for differentiating tiny variations in MRI scans [28].

Xception utilizes depthwise separable convolutions, which disaggregate conventional convolution
processes into more efficient components. This architecture minimizes processing expenses while pre-
serving substantial representational capacity, enabling the model to discern complex spatial patterns
in the images [29]. The computational efficiency of MobileNet renders it ideal for implementation on
low-resource devices. It employs depthwise separable convolutions and a streamlined design to attain
a compromise between speed and precision [30].

All of these models were initially trained on the extensive ImageNet dataset, which allowed them
to acquire robust and broadly applicable visual properties [31]. This work utilized transfer learning
by substituting the final classification layers of each pre-trained model with newly constructed dense
layers specifically designed for the four-class brain tumor classification assignment. The lower layers,
which held pre-trained weights, were either frozen or altered during training, enabling the models to
adjust to the specific attributes of brain MRI data as shown in Figure 5.

Figure 5: Xception model.

3.5 Model Architecture and Compilation

The model architecture designed for this study is optimized to accurately capture the intricate features
in brain MRI images and to generalize successfully to novel, unseen data. A pre-trained convolutional
neural network (CNN) underpins the architecture, with further layers incorporated for classification
purposes.

The input layer is designed for RGB images at a resolution of 128 × 128 pixels, selected to opti-
mize computational speed while maintaining adequate detail for precise classification. The model was
trained using mini-batch gradient descent with a batch size of 32. To mitigate overfitting and enhance
training efficiency, early halting and model checkpointing strategies were implemented. Early stopping
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observes validation performance and ceases training when no more improvement is detected, while
model checkpointing preserves the best-performing model throughout training, guaranteeing optimal
results are retained.

3.6 Metrics for Evaluating Models

Four prevalent metrics—accuracy, precision, recall, and F1-score—were employed to rigorously evaluate
the performance of the proposed models for brain tumor classification. In medical image analysis, where
minor misclassifications can lead to significant clinical consequences, these measures are particularly
vital.

Accuracy: Quantifies the ratio of total right predictions (including both true positives and true
negatives) to all forecasts made.

Precision: Denotes the ratio of accurately predicted positive instances to the total instances
projected as positive.

Recall (Sensitivity): Reflects the model’s ability to identify all actual positive instances.
F1-Score: A balanced metric of precision and recall, representing their harmonic mean.
To compute an overall performance score for multi-class classification, these metrics were calculated

for each class and subsequently averaged (macro-averaged) as shown in Figure 6.

Figure 6: MobileNet model.

4 Results

This section presents and analyzes the outcomes of experiments conducted with four pre-trained deep
learning models: DenseNet121, ResNet50, Xception, and MobileNet. These models exemplify vari-
ous convolutional neural network (CNN) architectures through their unique layer designs and feature
extraction capabilities.

Image segmentation is significantly enhanced by the application of fuzzy clustering. A proficient
method applicable in fuzzy clustering is referred to as the fuzzy c-means algorithm. The FCM is a
clustering method that allows a single pixel to simultaneously belong to many clusters. The FCM
approach aims to partition a finite set of pixels into "C" fuzzy clusters by utilizing specified criteria in
the decision-making process. The FCM approach aims to minimize the objective function presented
below. The dataset was limited and solely comprised MR images; yet, deep neural networks necessitate
a substantial dataset to yield favorable outcomes. The dataset comprised 3,264 MR images, with 80%
allocated for training and the other 20% distributed equally for testing and validation, each at 10%.
The initial data volume can be enhanced through augmentation, subsequently improving the training
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process. This also improves the model’s learning capacity. The weighting value for the F-measure
can be calculated using the precision and recall metrics. The F-measure is an effective metric for
assessing classification quality, representing the weighted average of precision and recall. The value of
this measure ranges from 0 to 1, where 0 represents the most unfavorable condition and 1 signifies the
most favorable condition.

5 Conclusions and Future Research

The findings indicate that transfer learning utilizing these architectures can attain very accurate and
balanced classification, with DenseNet121 achieving the best accuracy at 98.47%, followed closely
by Xception at 98.17%, MobileNet at 97.86%, and ResNet50 at 97.03%. All models demonstrated
significant generalization and resilient performance across essential measures, including precision, recall,
and F1 score. These results underscore the considerable potential of deep learning methodologies
to facilitate and improve clinical decision-making in neuro-oncology through rapid, dependable, and
automated tumor detection.

Although the results are encouraging, numerous opportunities for additional research persist. Sub-
sequent research should prioritize the augmentation of the dataset to incorporate a broader range
of heterogeneous and multi-center MRI scans, hence enhancing model generalizability and mitigat-
ing class imbalance. Utilizing advanced data augmentation techniques alongside ensemble or hybrid
modeling approaches may enhance classification accuracy, especially for difficult tumor types. Further-
more, using explainability techniques like Grad-CAM or saliency maps will enhance clinical trust by
rendering model judgments more transparent [36, 37]. Ultimately, investigating novel designs such as
Vision Transformers (ViT), Swin Transformer, and other advanced models may enhance performance
and support practical clinical implementation [38]. These stages will be essential for transitioning deep
learning-based brain tumor categorization from research to standard clinical practice.
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