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entities identification serves as an effective instrument for discerning intricate
networks. Diverse methodologies have been suggested for community
detection, each addressing the issue from a distinct viewpoint. Conse-
quently, extensive graph-processing community recognition techniques
have become essential due to the emergence of vast and intricate net-
works across several areas. This research presents an innovative method
for community detection that integrates node space similarity and uti-
lizes local knowledge. We utilize eigenvector centrality and proximity
metrics to improve community detection in social networks. Compre-
hensive studies on both synthetic and real-world networks demonstrate
the effectiveness of the suggested hybrid paradigm. The results demon-
strate that the hybrid technique is more effective in large-scale graphs
compared to other established algorithms, exhibiting significant robust-
ness and efficiency.

1 Introduction

As more and more of our daily activities are conducted online, there is an increasing need for social
data. People can interact and voice their thoughts on goods and policies via social media platforms [I].
Therefore, everyone from heads of state to small business owners uses them as a source of information.
Social media platforms make everything available to a global audience without regard to demographic
limitations. People now congregate in communities and organizations to communicate and exchange
information in a virtualized social environment made possible by the widespread use of social media [2].
A social network is a type of networking referred to by this designation. Currently, some of the most
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prominent platforms are Instagram, LinkedIn, Facebook, and Twitter, among others. The research
on these networks expands the boundaries of transdisciplinary fields. Researchers and scientists must
perform extensive data calculations due to the vast volume of data generated by the regular use of
this communication method [3]. Social network analysis (SNA) facilitates the examination of social
phenomena within a specific social context. The study predominantly utilizes data from a limited
community or social networking group [4, [5].

A cohort of readers with a shared interest in publications of the same subject matter and age
demographic plans to enroll in an introductory college course [6]. Graph theory is a popular method
for modeling the relationships and interactions of elements or entities in real systems. In mathematics,
a graph consists of a set of vertices interconnected by a set of edges [7]. Graph theory attributes are
utilized to comprehend user behavior, consumer preferences, and interactions [8]. Furthermore, learner
interactions in social learning environments are defined by graph methodologies. Understanding net-
work science and its applications is essential for representing and assessing data derived from social
networks [11, [12]. These nodes are designated as leaders who possess exceptional skills in community
building [13], 14]. Currently, the predominant focus in Social Network Analysis (SNA) is the identi-
fication of communities and significant nodes due to their applications in recommender systems [16],
e-learning [15], and healthcare [I7]. Community discovery (CD) is the process of identifying groups
of users inside a network who share analogous traits. Community detection is employed to ascertain
the network’s structure and functionality by identifying the distinct connections among the nodes [18].
To do this, three methodologies may be employed: utilizing topological features, incorporating supple-
mentary node and edge data, or integrating both [19]. The temporal complexity and size limitations of
social networks render the selection of an appropriate community structure a formidable challenge. Al-
though certain methods from the aforementioned categories can rapidly analyze large-scale graphs, they
may also uncover subpar community structures [20]. Elevated modularity signifies that the community
detection algorithm effectively clustered the nodes into high-density, functionally distinct communities
[21]. Communities inside a network are discovered utilizing the proposed methodology. The procedure
commences with an input network depicted by an adjacency matrix. Consequently, prominent nodes
are identified by their extensive connections and numerous interactions [22]. It has demonstrated
considerable efficacy in transforming high-dimensional graphs into continuous, dense, low-dimensional
vector spaces [16].

The centrality metrics indicate the significance of nodes inside the network framework. Influen-
tial nodes characterized by high eigenvector centrality and strategically situated nodes exhibiting high
proximity centrality constitute primary communities [23]. Graph embeddings, such as DeepWalk and
node2vec, learn representations that uphold the proximity and structural responsibilities of nodes.
Nodes with analogous vector representations are likely to possess comparable network neighbors, sig-
nifying community affiliation. The current modularity-based approaches face several challenges [24].
For example, they can’t find communities that are smaller than a certain size because of a resolution
problem. This means that they miss complex structures within large networks. Another technique
tends to create large, poorly defined communities by grouping different nodes, resulting in excessively
broad and less significant community boundaries. Along with centrality metrics and graph embed-
dings [25], this work created a hybrid model that aims to improve the limitations of modularity-based
approaches. We utilized the concept of centrality measurements, specifically eigenvector centrality, to
discover highly influential nodes that constitute the center of tiny networks. These nodes can serve
as the primary mechanism for identifying smaller groups that modularity may overlook. Researchers
have shown that graph embeddings hold complex structural details, which makes it easier to find subtle
patterns that separate small communities [26] from the larger network. Proximity centrality, according
to research, effectively identifies nodes centrally situated within a community, leading to a more pre-
cise delineation of community boundaries. Such an effect can inhibit the establishment of excessively
expansive communities. The methods we look at are modularity-based methods that focus on global
network structure, centrality, and graph embeddings that give us information at the local and node
levels. Integrating these methodologies provides a more holistic perspective of the network [5].

Graph embedding is an exceptionally efficient method for tackling challenges in network analysis.
Moreover, the objective of graph embedding is to convert a network into a lower-dimensional vector
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space while maintaining the structural aspects of the network [27]. Moreover, in a low-dimensional
space, it is feasible to represent the nodes proximal to the network with a uniform vector. This
streamlines responsibilities related to recognizing and classifying communities. The proposed paradigm
consists of three separate phases. We first create an embedding space in which the nodes are shown
as vectors. We identify nodes with exceptional capacity for community formation and significant
influence over others through degree centrality measurements. Subsequently, we establish a preliminary
community structure by clustering nodes that exhibit the highest similarity to the prominent nodes
within the same community, as determined by the Jaccard coefficient in the embedding space. In
the concluding stage, the robust communities are amalgamated with the frail communities that were
excluded from the initial community structure developed in the second phase.

1.1 Motivation

This proposed method seeks to detect possible personalities that may impact social network com-
munities. Influencer targets may encompass users with elevated eigenvector centrality to establish
brand connections among networks. A further source of motivation was uncovering the interconnec-
tions among other cultures. Individuals with elevated closeness centrality can serve as intermediaries
between distinct communities, facilitating communication and the exchange of knowledge. Compre-
hending these connections may facilitate the formulation of strategies to promote collaboration among
groups or to disseminate information more efficiently across the network. Integrating graph clustering
with eigenvector and proximity centrality may enhance our understanding of information flow within
these communities, as well as the interactions among users and their influence on one another.

1.2 Research Problem

Despite the plethora of user interaction data offered by online platforms, comprehending how indi-
viduals engage and establish communities continues to pose a challenge. Traditional approaches to
community identification may inadequately reflect the complexities of user behavior and information
dissemination. This research proposal seeks to establish a more thorough methodology for detecting
concealed communities inside user interaction networks.

e What is the level of connectivity among users inside designated user societies?
e Who are the principal contributors in every the neighborhood?

e Can a hybrid methodology integrating eigenvector and closeness centrality improve the precision
and comprehension of social network recognition?

e Which findings may graph segmentation offer on user actions and interaction routines?

1.3 Contribution

The primary innovations and contributions of our work are summarised as follows:

e Community cohesiveness is assessed by measures like edge weight, adaptability, and the mean
grouping ratio.

e We analyze the impact of these individuals in molding user experiences, disseminating knowledge,
and connecting different communities.

2 RELATED WORK

2.1 An Index of Community Detection Methodologies

Community detection has been the subject of extensive research [20], and various algorithms [29] ex-
ist for this purpose. The methods can be classified into the following categories: modularity-based
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methods, spectral analysis-based methods, hierarchical structures, clustering methods, random walk
methods, label-propagation methods, graph-based methods, and information-theoretic measure meth-

ods [30].

2.2 Modularity-Driven Group Recognition

According to Equation (1} the Girvan-Newman algorithm [3I] employed modularity, a recognized stan-
dard metric, to detect communities within the network. Subsequently, modularity served as the foun-
dation for the development of further algorithms. These algorithms produce robust comparative results
and are widely utilized across various fields, including product recommendations and research group
identification [32]. The modularity metric is modified and linked to the spanning tree for community
detection [33].

1 Kmgy, x kmjy,
Qm = % Z ’VAinjn - 271-‘ J (Cm7 Cjn) (1)

in,jn
Ainjn represents the adjacency matrix between vertices in and jn. n indicates how many edges there
are in the graph. Cj, indicates the class that is associated with node i. As stated in Equation [2| the
Kronecker delta is (Cip, Cjyn). It equals 1 in the case when c1 equals ¢2 and 0 otherwise.

1 if én and jn in similar community

J (sz C]n) = { (2)

0 else

A density-based technique is an alternative method for community discovery [34]; however, this method
requires the algorithm to accept the resolution parameter as input. By recognizing and addressing its
deficiencies, the society attains more cohesion [35]. Nonetheless, the application of this technique
results in inferior modularity and NMI performance measures for certain networks in comparison to
alternative algorithms.

2.3 Evaluating Contemporary Community Detection Methods

Various methodologies have been employed historically to tackle the community detection issue. Com-
munities can be identified by several methodologies, including networks, modularity, mathematical
models, and evolutionary computing. Instances of these models encompass fuzzy logic [38], matrix
factorization [37], and statistical methods [36]. Clans [40], local communities [39], and network em-
bedding [41] exemplify applications of the network approach in research. The modularity technique
optimizes community quality, as indicated by Louvain [42], Leiden [43, [44], Girvan Newman [31], and
Greedy modularity [45]. Evolutionary computing techniques employ abstract principles from biological
evolutionary theory to create optimization algorithms or methodologies. This method combines the
tenets of biological evolution with computational technologies, including particle swarm optimization
[47] and genetic algorithms [46]. Nonetheless, several strategies utilized to achieve this maximum mod-
ularity yield suboptimal results. Moreover, several methods generate groups of either substantial or
negligible size that may lack practical significance. Some algorithms demonstrate reduced adaptability
to alterations in the network, especially those involving the addition or removal of edges or nodes. The
results differ when diverse methods are utilized to examine a network for community identification.
Each technique produces unique modularity and community results [48].

2.4 Challenges in Community Detection: Surpassing Local Optima

Multiple factors may contribute to the emergence of local optima in community detection. Due to a
resolution restriction, modularity-based community recognition algorithms may overlook small com-
munities [49]. The generalized modularity density technique may discern communities of diverse sizes
and configurations by assessing node density within the network [50]. Modularity utilizing Z-scores,
which standardizes the modularity score, is a further method that may detect communities of differing
sizes [51]. A significant concern is the inadequate community infrastructure [52]. Researchers have pro-
posed many techniques, like concealed community identification and poor supervision, to address this
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issue [53]. Hidden communities denote clandestine or obscure groupings that are challenging to locate
through traditional community detection methods. An alternative method for recognizing community
structure is weak supervision, employing the node2vec technique [54] to detect communities of diverse
sizes and shapes. Communities with a low degree of embedding present challenges in identification, as
noted by [55] in their research on node2vec.

2.5 Hybrid Approach for Community Detection Utilizing Enhanced Modularity

Most techniques for community detection utilize modularity and similarity metrics independently.
The proposed hybrid method utilizes the modularity of network measurements, such as proximity and
eigenvector centrality, to improve the ultimate community structure. Moreover, our approach surpasses
prior methods regarding collaborative results, NMI metrics, and node categorization. It also exhibits
exceptional modularity.

3 Prelude and Definition

This section provides a concise overview of the proposed hybrid model and illustrates an example of
the utilized graph measurements. The proposed paradigm has five stages. Initially, we establish an
embedding space in which vector representations of the nodes are located. Through degree centrality
assessments, we uncover nodes with a notable ability to establish communities and exert considerable
influence over others. Furthermore, we employ the Jaccard coefficient similarity within the embedding
space to cluster nodes that closely resemble prominent nodes within the same community, so estab-
lishing an initial community structure. Moreover, the communities are categorized into classifications
that are either weak or strong. Moreover, the less resilient groups that were initially excluded from the
community structure generated during the s phase are integrated with the more robust communities.
Finally, the ultimate communities are identified and prioritized based on modularity and NMI criteria.

3.1 Problem Denotation

This study depicts a community of people as an unweighted and undirected graph G, = (N, Ey),
which is composed of a set of m, edges E; C No,xN,, where Ey = u;, u]f%. The nodes in the social
network are their users, and the edges represent their ties or interactions with each other. In this case,
our objective is to divide graph G into a collection of separate communities, ensuring that each user wu;
in the neighborhood N, is distinct inside a community. The primary goal is to identify a community
arrangement in which users exhibit strong connections with other users within the same community
CieD while having weak connections with users in different communities C'j # ieD. Furthermore,
our objective is to identify significant actors or leaders inside each community OieD to improve our
comprehension of the internal organization of each community.

3.2 Significance of Nodes
3.2.1 Adjacency Matrix

The matrix representing the adjacency A of graph G G = (N, D) is a nxn matrix, where N =
ur, uls, .., uy and E = Ey;|(us, uj)eN. AG = [a;, j]1 <i,j < n as shown in Equation

1 ifeyn €F
a; i = B 3
I {O otherwise (3)

3.2.2 Degree of Node

The degree of a graph G = (N, E) is the number of edges that connect a node. Equation [4] provides
the algorithm for computing the degree of a collection of neighbors of a node, represented by (u):

Dege (ui) = |pa (ui)| = {u; € N [ aij =1} (4)
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where a; ; = 1 denotes the presence of an edge between u; and u;, and |[PG(u;)| is the cardinality of
the collection of neighbors. Formally speaking, the degree of node u;eN with AG = [a;xn is given in
Equation

DegG (ul) = Z Qi (5)
j=1

Users engaging in a higher volume of interactions than their counterparts may wield greater influence
and enjoy enhanced access to information. Individuals possessing the highest educational attainment
within the network are seen as active nodes, or hubs, proficient in disseminating knowledge within a
certain region of the graph. In community detection, it is crucial to concentrate on these nodes, as
they are generally the most significant and possess a high likelihood of creating communities.

Table 1: Time complexity of different centrality measures

Approach | Centrality Measure rélorieplexi ty
Freeman et | Degree Neighbors based 0(n)

al. [63] Centrality

Freeman et | Closeness diameter based 0(n.log(n) +
al. [64] Centrality n.m

Borgatti et | Eigenvector values based 0(n?)

al. [65] Centrality

Borgatti et | Betweenness flow based 0(n?)

al. [65] Centrality

3.2.3 Node Degree Centrality

The relative significance of a vertex inside the network is quantified by a metric referred to as degree
centrality. To enable comparison, it is often beneficial to normalize the degree value specified in the
equation. @] The degree centrality of node u;eN is represented as DCq (u;) whenever there is an
adjacency matrix AG = [a;xn.

Degq (u; J
DCeq (u;) = nfi(l ):n_lzaij (6)
=1

FEigenvector centrality, betweenness centrality, and proximity centrality are among them. Each statistic
signifies a unique focal point of attention. The centrality measures are thoroughly elucidated in Table

il

3.2.4 Closeness Centrality

According to [66], the closeness centrality C'C, of a node in a network is calculated by taking the
reciprocal of the total length of the shortest paths that connect the node to all other nodes. This
calculation may be seen in Figure 3. Equation [7] provides the estimated normalized C'C, of node j.

B N, —1
E]]gvzol dg (]7 k)
The value of |V is equal to N. The closeness centrality values of the nodes are often denoted as the CC.
vector when the C'C,[j] values are organized into a vector of length N. Importantly, the normalized
CC, of (1) adheres to the fundamental principle of centrality, wherein a greater CC, value signifies

greater significance. However, for the sake of making things easier, we take into account the combined
length of all the shortest routes, as given by Equation [8] from each given node to every other node:

CCelj] (7)

No
difk] = dig(k, j) (8)
j=1
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Figure 1: Community with Closeness Centrality

Figure 2: Community with Eigenvector Centrality

3.2.5 Eigenvector Centrality

Eigenvector centrality [67], illustrated in Figure accounts for the significance of neighboring nodes in
conjunction with the total count of neighboring nodes. In contrast, degree centrality is calculated solely
by tallying all directly connected nodes, as delineated in Equation [} In eigenvector centrality, the sig-
nificance of links varies. The influence of an individual is typically more significant in connections with
prominent individuals than with those of lesser influence. In addition to its connections, the score of the
connected node (eigenvector centrality) is significant in eigenvector centrality. Eigenvector centrality
is determined by evaluating an individual’s connectedness to the network’s most significantly related
components. Individuals with elevated eigenvector analysis scores exhibit extensive connectivity, with
several connections extending to the network’s conclusion. Eigenvector dominance of the adjacency
matrix is referred to as eigenvector centrality. Google’s PageRank is a form of eigenvector centrality,
developed by [68]. SCAN-+-+ is based on the finding that real-world graphs, such as web graphs, ex-
hibit elevated clustering coefficient scores [69]. The density of a node is ascertained by its clustering
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coefficient [70]. It is anticipated that a node and its two-hop-away node, especially in real-world graphs
[71], will have a substantial overlap in their neighbors. This feature underpins SCAN-++’s pruning of
the density assessment for shared nodes between a node and its two-hop distant node.

Av =l 9)

An eigenvector of a square matrix A is a non-zero vector v such that the product of A and v yields
a scalar multiple of v. The constant multiple is generally denoted by the symbol A. The eigenvalue
A is associated with the vector v in matrix A. Individuals with elevated eigenvector centrality occupy
leadership roles within the network. They are frequently prominent individuals possessing an extensive
network of associations with other distinguished figures. Consequently, they often function as promi-
nent thinking leaders. Conversely, individuals with high Eigenvector centrality may not consistently
fulfill responsibilities characterized by high betweenness and high closeness. The time complexity of
integrating proximity centrality and eigenvector centrality for community detection can be reduced
by mitigating the computational bottlenecks associated with each metric. We diminished the tem-
poral complexity of proximity centrality through the application of the random sampling technique.
Consider use a random sampling strategy rather than calculating closeness centrality for each user.
This necessitates fewer computations and yields a satisfactory estimate of average proximity centrality
inside the network. To diminish the temporal complexity of eigenvector centrality measurements, we
utilized iterative approaches. It asserts that iterative techniques, such as the Power Method, can be
employed to compute eigenvector centrality. Although these methods may require additional iterations
to achieve convergence, they frequently outperform the explicit computation of the eigenvectors of the
adjacency matrix in terms of speed.

Calculate the Similarity using
Jaccard Coefficient using
(Algorithm 2)

Similarity >
Threshold

l Yes

Select Strong and Weak Nodes

}

Add Strong and Weak nodes in
similar community using
Algorithm 3

All Nodes
Status Visited

l Yes

Calculate the Similarity (Jaccard
Coefficient) and Merge
Communities using (Algorithm 4)

}

Similarity >
Maximum

l Yes

Finally Detection Communities

Begin }_.| Extraction of Influential Nodes (Algorithm 1) ‘

| Calculate the Degree Centrality |

}

| Closeness and Eigenvector |

| Sort in descending order |

}

Select high degree centrality
node

Masking Nodes (Visited/Not
Visited)

Not Visited

| e

Select high degree centrality
node

Yes

No

Rank the Communities using ) N
Modularity and NMI values using (Algorithm 5) of Indexed
l Strong and Weak Communities

Figure 3: Flow diagram for the selection of community
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4 Proposed Ideology

We delineate the essential terminology of our proposed hybrid model and, thereafter, provide an in-
depth explanation of each step of the model. Figure [3|illustrates the flow diagram for the Proposed
Hybrid paradigm. The proposed methodology consists of the following primary steps:

1. Performing the extraction of influential nodes and the generation of an embedding space.
2. Determining the initial configuration of the community.

3. Choosing strong and weak communities.

4. Community final merging.

5. Community detection and ranking based on modularity and NMI values.

The degree of a node i, represented as di, is the count of edges linked to node i, computed as di = > Aij.
The degree matrix of the graph G is defined as D = diag(d1, d2, ..., dn), where D is a diagonal matrix
containing the degrees of each node on its diagonal. The Laplacian matrix L of the graph G is
defined as L = D — A. The diagonal elements of L correspond to the degrees of the nodes, Lii = di,
whereas the off-diagonal elements are represented as Lij = —Aij. Given that A is symmetric for an
undirected graph, L is likewise symmetric, and the sum of each row in L is zero. The Laplacian matrix
L is recognized as positive semi-definite, indicating that all its eigenvalues, collectively termed the
Laplacian spectrum, are nonnegative. We represent the eigenvalues in descending order as in Equation
101

A=A > 2>\, (10)

4.1 Nodes with considerable influence

It facilitates the identification of individuals who are significantly pertinent to various professions due
to their capacity to swiftly spread knowledge and information within the network. This research
uses Laplacian eigenmaps for dimensionality reduction. This technique utilizes vertices and edges to
project the vertices into a lower-dimensional space (d). The parameter "d" regulates the number of
features utilized to represent each node in the embedded space. By selecting a smaller value of d in
the network, we condense the information regarding the node into a more succinct representation to
efficiently identify the influential nodes. A larger "d" will preserve more information but will be less
compressed. Consequently, we select a lesser value of d. To mitigate computational complexity, we
diminish the dimensionality of space for various tasks. This work employs the Laplacian Eigenmap
approach, which aims to preserve the links between nodes in a lower-dimensional space, where the
parameter (d) affects the fidelity of these interactions. The centers of the communities serve as potent
nodes. Finally, we use the LE method to build the embedding space after putting each node in the
network in decreasing order based on its degree centrality value. The depiction of nodes as vectors
in the embedding space facilitates the analysis of the network’s structure and connections. Upon the
establishment of the embedding space, each node within the network is designated the label Not visited,
signifying that they have not yet been allocated to a community. This document outlines the essential
phases in community detection.

1. After determining the level of centrality of each node, place the nodes in decreasing order.
2. Create the embedding space using the Laplacian Eigenvectors technique.

3. Give each node a "No visited" flag.
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4.2 Preliminary Community Identification

The similarity is computed within the embedding space generated by the Laplacian Eigenvectors tech-
nique, employing the Jaccard Coefficient metric. Nodes exhibiting significant similarity to the chosen
core should be categorized together. To do this, we allocate the core community to all connected nodes
whose similarity value surpasses a certain threshold, S. Upon establishing the initial community and
designating its members as "Visited," we advance to the next unvisited node with the highest centrality
rating. In summary, comprises a sequence of meticulously organized steps:

1. Select the node with the maximum centrality and a state of Not-visited.

2. Calculate the Jaccard Coefficient of Similarity between the most influential node and the remain-
ing nodes that have the status of not-visited.

3. Combine the most important node in the community with additional nodes that are comparable
to it, and then designate them as "Visited."

4. Continue doing the identical procedures for the subsequent significant vertex that has not been
visited until all the vertices in the graph have been marked as visited.

To establish the preliminary community structure, we initially select the node exhibiting the highest
degree centrality as the core and compute its similarity with the remaining nodes in the graph. The
similarity is calculated in the embedding space generated by the LE algorithm utilizing the jaccard
coefficient measure using Equations [I1]- The objective is to cluster nodes that exhibit a significant
degree of similarity with the chosen core. To accomplish this, we allocate all analogous nodes to the
core that possess a similarity value over a specified threshold k to the core’s community. Upon the
completion of the initial community, we designate the status of its members as "Visited" and proceed to
the next unvisited node exhibiting the highest degree centrality. We implement the identical procedure
on the second designated core and persist until every node in the graph has been designated as "visited."
The preliminary community structure is now established.

4.3 Identification of Robust and Fragile Communities

Weak communities are smaller than external ones; they may consist of singleton communities or exhibit
reduced interactions among members. Therefore, certain acquired communities must be merged to
achieve the ideal community structure for the graph.

4.4 Consolidation of Communities

The predominant techniques for optimizing community structure have been articulated in the litera-
ture and focus on maximizing or decreasing a specific target function. The subsequent phase, detailed,
involves identifying communities that were deficient in the initial community structure and amalga-
mating them with robust communities. To minimize the temporal complexity as much as feasible,
we calculated the Jaccard Coefficient similarity [72] between the cores of strong communities and the
members of weak communities. The initial stage in merging weak and strong communities is to find
the Jaccard Coefficient similarity between each weak community’s nodes and each strong community’s
core that can be calculated using Equation

B | Ny N Nyl

Jaccard
= - 11
) | Ny U Nyl (11)

sim(u, v
N, and N, represent the collection of things that users u and v, respectively, have rated. The addition
rule theorem is applied in this case to form |N, N Ny| = |Ny| + |Ny| — | Ny N Ny |, since N, and N,, are
not mutually exclusive. On the other hand, according to Equation [12| [Nu| and |Nv| represent the
cardinality of the sets N, and N, respectively.

Jaccard _ ’Nu N NU’
[Nu| =+ [No| = [Ny NN |

sim (u, v)

(12)
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Suppose |Ny|, | N,| are the cardinality of the set of items un-co-rated by users u and v respectively.
Hence, |Ny| = |Ny| - [Ny N Ny| and |Ny| = |[Ny| - [Ny N Ny|. As a result, the Jaccard similarity can be
written as in Equation

| Ny NN | _ [Ny N Ny
(|Nu] + [Ny 0V Ny|) + ([ No| 4 [Ny N Ny |) = [Ny N Ny | |Nu| + | Ny| + [Ny N ]\Ev|
13

sim(u, ,U)Jaccard —

Modularity is the primary criterion to consider in discussions of community detection. The modularity
of a network quantifies its capacity for division into distinct groups [73]. Optimization frameworks
employ modularity to identify community networks. This concerns the discrepancy between the actual
and expected amounts of edges. The notation used in Equation [14] represents modularity Q:

Q= Z (esi — af) (14)

Two communities should be merged if there are a greater number of connections between them com-
pared to other groupings as can be extracted using algorithm . The variable [;; is defined as the count
of inter-community linkages between C; and Cj, as stated in Equation .

lij :| (Ui,’Uj) T; € C’Z-andvj S Cj ‘ (15)

We use Equation [16]| to determine if, among all the communities in the community setting, the com-
munity C; and C; should merge.

Sl] N dCide <16)
Let @m; represent the community set’s modularity before merging. If @m; > @m, merge Com,; and
Comy; into a single community to update the community structure. This process should be continued
until there is no more room for improvement in modularity; at that time, the resulting community
structure will have the highest feasible modularity. Inter- and intra-community edges are used to
visually portray the identified communities to improve understanding of the relationships between
nodes and communities.

5 Performance Evaluation Metrics

Modularity can be utilized to evaluate the results of multiple algorithms and identify the optimal
method through community discovery.

5.1 Modularity

The preliminary metric is well-acknowledged in the literature. This method contrasts the real connec-
tions within a community against the probability of encountering those links in a randomly generated
network. The efficacy of a network is maximized when there is a high concentration of connections
within communities and a low concentration of connections between communities. The division with
the highest modularity score is considered the most optimal in this context. Equation delineates
the modularity of division D given a graph G as follows:

|D|

Q(D) = Z (en' - 6%2) (17)

=1

The likelihood of an intra-community link in the community C; is denoted by e;;, while the likelihood
of a relationship with at least one extremity is indicated by a;. The information that is normalized mu-
tually (NMI) Normalized mutual information (NMI), normalized to a number between 0 and 1, is used
to determine the amount of information about two variables. The NMI is calculated using Equation
which involves taking the logarithm of the ratio between the joint probability of communities U
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and V and the product of the probabilities of each community, denoted as logPUV (i, j) PU(i)PV (j).
Values approaching 1 imply a robust connection between two variables, while values approaching 0
signify a feeble one.

o Puy (i
231, ZJC:l Pov (i, j) log#}g‘/]&)

MY = o (0108 Po (i) = 0%, Py (i) og Py ()

(18)

5.2 Clustering Coefficient

We now give the primary observation utilized in both network average and global grouping coefficient
estimators.

E[pnf(2x)] = D pil (¢ f (z1) | @x = i] (19)
=1
=Y W) (20)

= Z %%f(vi). (21)

Equations[I9]- shows the initial equality is a consequence of the law of total expectation. The second
equality is valid because there are 2 equal probability combinations zk — 1, vi, xk + 1, of which only 2
form a triangle vj, vi, vk or a reverse triangle vk, vi,vj. Observe that in a triangle or a reverse triangle,
vj is connected to vk(Aj, k = 1). The third equality is established using algebraic manipulation.

6 Experiments and Results

This section delineates the datasets and evaluates the performance of the most advanced community
detection algorithms. The primary objective of this axis is to conduct an experimental investigation to
determine the feasibility of our idea. We achieve this by evaluating the model’s efficacy on both simu-
lated and actual networks. We employ industry-standard metrics, such as modularity and normalized
mutual information (NMI), as performance indicators.

Table 2: Experimental Settings

Configuration Parameters

CPU Intel(R) Xeon(R) Gold 6154
GPU NVidia GeForce RTX 3090
Operating System Windows 10

Environment CUDA 11.1

Development Platform | Jupiter Notebook

Python Library PyTorch

Video Memory 32GB

System Drive 1TB

6.1 Experimental setup

Table [2| shows the hardware requirements for the proposed model. The code is written in Python,
and the other techniques were executed using the Python igraph package [74]. The network module in
Python [75] is utilized to enhance the visualization of the detected communities.
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6.2 Real World Datasets

1. The network of Zachary’s Karate Club is examined in the study by [76]. Zachary established a
concrete network by leveraging the social relationships among the 34 members of a karate group.
The network has been divided into two portions due to a political dispute between the club’s
leadership and the instructor. For this investigation, we employ the fundamental iteration of this
network.

2. Between 1994 and 2001, a social network known as The Dolphin’s Network [77] documented that
62 bottlenose dolphins seen in New Zealand consistently established associations with each other.
Two groups exist inside the network.

6.3 Experimental Results

Several specific modifications are required for the proposed algorithm to operate more effectively. Em-
ploying the Eigenmaps methodology, we initially identify the most significant nodes. The acquired
vectors in the embedding space are utilized in the second and third phases of the proposed method-
ology to develop and enhance the original community structure [35, [37]. Consequently, the value of
d directly influences the identification of communities. Consequently, it significantly influences the
efficacy of the proposed model. The real network architecture will adjust this number to ascertain
the suitable dimension d. The subsequent phase of the suggested methodology involves clustering
the node-representation vectors according to their similarity. The objective is to create a preliminary
community structure by clustering related nodes, which can subsequently be refined in the third phase.
A node is considered part of the community of an influential node if there is a significant degree of
similarity between them. In the trial phase, a node is classified as a member of the core community if
the similarity between the two nodes exceeds 0.8. It is essential to note that this value was employed by
every analyzed network [40]. We applied Algorithm to six real-world networks possessing established

Figure 4: Karate Club Community structure (Left) Ground Truth (Right) Community Structure
detected by Hybrid Model

community structures. The identified community structures were evaluated for modularity and Nor-
malized Mutual Information (NMI) utilizing Algorithm and advanced methodologies. The results of
Algorithm for each network on the list were examined and reported separately. The graphics illustrate
the ground truth and the community visualizations produced by Algorithm for each data collection.
The designated communities are marked with various colors. This section delineates the intermediary
phases for implementing algorithm to obtain the final community structure from the initial community
structure of the karate club network. In each step, two communities are chosen and subsequently
merged, based on the quantity of edges both internally and externally among the communities. The
communities will reconvene if the modularity continues to improve. The karate club network depicted
in Figure [ was analyzed using algorithm , yielding many communities in the outcome, in contrast
to the two present in the ground truth. Nonetheless, the modularity and NMI surpass those of the
alternative approaches |29 [31]. Figure [5| illustrates the resultant dolphin social network, comprising
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six communities as opposed to the four communities of the ground truth. The NMI of the identified
communities is superior compared to the various algorithms. Moreover, modularity is superior to the
Louvain [42] and Infomap [82] algorithms. The communities exhibiting the highest modularity and
normalized mutual information have been identified, among other methodologies. Our approach utiliz-
ing methods yields superior NMI and modularity in comparison to the ground truth, despite variations
in the number of identified communities. We employ the suggested algorithm in conjunction with
associated approaches [20, 27] to extract communities from the six real-world networks delineated in
Table following the collection of the experimental setup and data. The proposed approach effectively

Figure 5: Dolphin community structure (left) versus ground truth (right) community structure identi-
fied by the hybrid model.

detects the communities inside the Karate network, characterized by distinct membership attributes,
as seen in Figure [l This is further substantiated by the NMI metrics, illustrating that the proposed
algorithm outperforms alternative methods in achieving superior values. This figure [] illustrates that
the proposed technique performs more effectively for the Karate network, however its inferior value

compared to the Walktrap [81], FLPA [22], Louvain [42], and Spinglass [80] algorithms. Irrespective

Figure 6: Clustering of different Communities

of dataset size, our strategy yields a community structure that aligns more closely with the ground
truth than competing methodologies. Our proposed hybrid model algorithm exhibits greater stability
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than other algorithms, such as Louvain [42], FLPA [22], and Spinglass [80]. This is accurate as our
concept does not depend on a random process. Moreover, our proposed hybrid model performs effec-
tively in dense graphs, yielding substantial NMI values, which is recognized as a crucial advantage for
community detection in social networks. Figure [f]illustrates the community structure indicated by the
hybrid model. In summary, as articulated in [19], the rapid identification of a community structure
that closely resembles the actual structure is emphasized. Consequently, our methodology excels at
identifying prominent communities within social networks.

The experiment selects baseline approaches, encompassing many classic community detection meth-
ods and established clustering techniques to illustrate the superiority of the recommended method. To
evaluate the efficacy of the proposed strategy, it will be juxtaposed with established embedding-based
baselines and existing graph embedding methodologies [T}, 2], [3] for community discovery, into which
networks will be integrated. Subsequently, we derive community divisions from the low-dimensional
vector space obtained by. We employed the modularity value (Q) and the Normalized Mutual Infor-
mation (NMI) metric in the evaluation process as outlined in [6l 8, 9]. The technique attains all six
highest NMI values and all five highest Q) values in the real-world community datasets. Despite a minor
mismatch between the @ values derived from the Ego-Facebook dataset and those from the Dolphins
dataset, the maximum NMI value of 1 is achieved, indicating that it accurately represents the correct
community for the actual categorization. In the DBLP dataset, the proposed method outperforms
alternative techniques [4, 5] and produces more precise results, achieving the highest NMI value of
0.91. The Amazon dataset has elevated Q and NMI values, with the NMI approaching 1, indicating
greater alignment with data from authentic communities. DBLP exhibited the most favorable out-
comes, demonstrating superior logic and effectiveness relative to other algorithms, which produced the
least modularity.

Figure 7: (a) Ground Truth Karate Club Community, (b) Karate Club Community detected by the
proposed method

6.4 Community Visualization and Evaluation Results

In Figure [7, the karate club network was analyzed using the suggested model, yielding three com-
munities, although the ground truth had only two communities. However, the modularity and NMI
surpass those of the other algorithms. Figure [§]illustrates the football social network, revealing nine

Figure 8: (a) Ground Truth Football network Community, (b) Football network Community detected
by the proposed method

identified communities, but twelve communities existed in actuality. The modularity and NMI for the
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communities identified by the proposed model are superior to those of existing algorithms. Although
the quantity of identified communities varies from the ground truth, our model demonstrates superior
modularity and normalized mutual information (NMI).

6.5 Discussion

The results show that picking the right centrality-based clustering method is very important in social
networks, recommendation systems, and fraud. Degree and betweenness centrality are valuable metrics
that are particularly effective for identifying key interaction hubs or influencers. The experiment
demonstrates that the clustering coefficient is not a robust predictor of significant clusters. This means
that eigenvector centrality and proximity centrality are no longer important. Degree and betweenness
have a strong correlation value of 0.85 to 0.86, which means that nodes with direct connections act as
bridges in the network. These measures do a good job of showing how users interact within clusters,
though not as well as when eigenvector centrality is added. The clustering coefficient exhibits a negative
correlation with degree (-0.47) and betweenness (-0.42), and an even stronger negative correlation with
itself (-0.98). The result suggests that nodes in densely clustered regions are less likely to operate as
pivotal connectors or to affect significant interaction patterns. In the absence of eigenvector centrality,
we forfeit insights on influential users linked to other influential users, which may be vital in hierarchical
or authority-driven networks. Eigenvector centrality is a way to figure out how powerful a node is on
a global scale by looking at both the number of connections and how those connections are linked to
other important nodes. Eliminating it may impair the capacity to identify central figures in intricate
networks, such as influencers in social media and pivotal decision-makers in communication networks.

6.6 Comparison of Performance Evaluation of Proposed Model with Existing Ap-
proaches

Table 3: Comparison of modularity and NMI for different approaches

Ref Modularity NMI | Degree Betweenness giﬁiﬁgﬁ
(%) (%) | (%) ()
(%)

Palacio

53] 91 90 81 82 80
Yuan [84] | 92 89 82 74 85
Farrokh

185 86 89 81 83 84
Werner

156 85 88 83 89 85
Cao [87] 89 87 84 78 74
Proposed | 95.05 92.50 | 91.62 90.65 86

Table (3| indicates that the study [83] attained a modularity of 91%, a normalized mutual infor-
mation (NMI) of 90%, a degree of 81%, and a betweenness of 82%. The evaluation metric values of
alternative methods exhibit modest variations. Table |3|illustrates that study [86] attained a modular-
ity of 85%, an NMI of 88%, a Degree of 83%, and a Betweenness of 89%, whereas the proposed model
reached a modularity of 95.05%, an NMI of 92.50%, a Degree of 91.62%, and a Betweenness of 90.65%.
The experimental results indicate that the clustering coefficient has minimal impact on community
discovery. Nonetheless, in certain instances, the clustering coefficient can be significant.

7 Conclusion

The emergence of social networking sites and the proliferation of the Internet have enabled effortless
contact among individuals on a unified platform. The nodes signify individuals or entities, while
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the edges illustrate their interactions. Individuals who engage in social networks and have analogous
decisions, tastes, and preferences establish virtual clusters or communities. Community identification
serves as an effective mechanism for discerning intricate networks. Scholars have proposed a variety
of methodologies for community detection, each approaching the problem from a unique perspective.
Large-scale graph-based community detection techniques have had to be created because of the growth
of large and complex networks in many areas. This paper presents an innovative method for community
finding that integrates node space similarity with localized knowledge. We utilize eigenvector centrality
and proximity metrics to improve community detection in social networks. This research has introduced
a five-phase hybrid methodology for identifying communities within social networks.
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