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Image Segmentation; Con- via the decoder pathway due to insufficient low-level feature propaga-

volutional Neural Networks; tion from the encoder components. Enhanced optimization of low-level

Residual Skip Connections; feature transmission from encoding to decoding pathways is essential

Knowledge Transfer; Machine for improved image reconstruction capabilities. This research proposes

Learning a transfer learning-enhanced residual U-Net framework that integrates
U-Net and VGG-16 architectures. VGG-16 integration within the en-
coder pathway enhances image reconstruction performance. Further-
more, residual pathways within skip connections are incorporated to
emphasize critical feature characteristics while suppressing noisy and
irrelevant feature responses. The model undergoes training using The
Cancer Imaging Archive (TCIA) and BraTS 2018 datasets, demonstrat-
ing improved performance in segmenting small-scale brain tumors. The
proposed methodology exhibits competitive performance compared to
existing brain tumor segmentation approaches.

1 Introduction

The advancement of medical technology enables healthcare professionals to develop more efficient diag-
nostic and treatment systems. Numerous medical domains benefit from e-healthcare implementations.
Computer vision applications in biomedical imaging are gaining prominence due to their critical role
in providing diagnostic information to radiologists for enhanced patient care. Various medical imaging
modalities including X-ray, Magnetic Resonance Imaging (MRI), Ultrasound, and Computed Tomog-
raphy (CT) significantly influence patient diagnosis and treatment protocols [I]. Brain tumors develop
when abnormal cell clusters form within or adjacent to brain tissue, as illustrated in Figure The
rapid proliferation of malignant cells severely impacts patient health outcomes. The analysis, diagno-
sis, and treatment of brain imagery using sophisticated medical imaging technologies represent crucial
research areas for physicians, radiologists, and clinical specialists. Brain imaging research is considered

ID: MLHI/V31-22 A@©) 2025 Copyright by the Authors.



Machine Learning for Human Intelligence Vol. 3, Issue 1

fundamental since brain malignancies are lethal conditions responsible for substantial mortality rates in
developing regions. For instance, approximately 29,000 individuals in the United States are diagnosed
with brain tumors annually according to the National Brain Tumor Foundation, with 13,000 fatalities
occurring yearly [2]. Specialized MRI techniques including MR Spectroscopy (MRS), Perfusion MR,
and Diffusion Tensor Imaging (DTI) have been utilized for comprehensive brain tumor examination.
Brain malignancies are categorized into two primary types: malignant (cancerous) and benign (non-
cancerous) tumors. The World Health Organization classifies malignant tumors into Grades I through
IV. Grade I and Grade II tumors are considered less aggressive, while Grade IIT and Grade IV represent
malignant forms with severe health implications that may result in patient mortality.

Brain Tumor Classificaktion
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Figure 1: Classification of Brain Tumor Types.

Multiple imaging techniques and methodologies are employed for brain tumor management and
prognosis [3]. Within image processing applications, segmentation constitutes the primary step for
extracting abnormal brain regions from MRI scans, as demonstrated in Figure 2] Tumor region seg-
mentation is essential for prediction, treatment planning, and therapeutic outcome evaluation. MRI
encompasses various sequence techniques for segmentation including T'1, Tlc, T2-weighted, and FLAIR
modalities. MRI data contains multiple characteristics advantageous for segmentation, including struc-
tural tensor eigenvalues, local histogram information, and texture features. Deep learning methodolo-
gies demonstrate superior performance in image analysis domains such as object detection, image
classification, and semantic segmentation. Deep learning approaches have achieved high accuracy
levels for automated brain tumor segmentation using multimodal MRI data. Convolutional Neural
Networks (CNNs) primarily assist in patient classification, segmentation, and survival prediction for
brain tumor cases. The development of deep learning frameworks for brain tumor analysis motivated
our comprehensive examination of brain tumor research domains. Despite numerous recent efforts to
support medical professionals, challenges remain in precision, robustness, and optimization [4]. Al-
though various methodologies have been proposed for brain tumor segmentation with ongoing research
efforts, further improvements are necessary.

Several challenges exist in the literature regarding brain tumor segmentation: rapid tumor devel-
opment makes early-stage segmentation difficult, segmentation complexity arises from noise, unclear
boundaries, unwanted background, irregular shapes, and intensity variations. Semantic gaps exist due
to conventional skip connections in U-Net architecture that cannot effectively aggregate features; there-
fore, residual skip connections are employed for improved feature aggregation. Additional challenges
include overfitting, class imbalance, and feature insufficiency. These complications make brain tumor
identification challenging. Our objective is to propose a methodology that enhances image quality for
accurate brain tumor segment detection and improves precision using state-of-the-art techniques.
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Figure 2: Brain Anatomical Structure.

1.1 Research Objectives

Numerous methodologies have been proposed for brain tumor segmentation with extensive ongoing
research, yet further improvements remain necessary. Brain tumor segmentation presents challenges
including noise interference, indistinct boundaries, unwanted background elements, complex geome-
tries, and intensity fluctuations. Various difficulties associated with rapid tumor development make
early-stage segmentation challenging. Our goal is to develop an approach that enhances image quality
and precisely segments brain tumors while increasing accuracy through advanced methodologies.

1.2 Organization

The document organization follows: Section 2 describes previous research in brain tumor segmen-
tation, Section 3 presents the methodology with detailed operational descriptions, Section 4 covers
experimental setup and results analysis, and the final section provides conclusions summarizing the
research.

2 Related Work

Various architectural designs have been proposed for brain tumor segmentation aimed at enhancing
system accuracy. Tumor segmentation can be accomplished through pixel-wise classification or dense
pixel classification approaches. This section examines novel strategies employed by researchers for
brain tumor segmentation tasks. Authors in [5] utilized Wide Residual Networks (WRN) for automatic
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glioma segmentation to extract features from multi-modal brain tumor samples. Subsequently, PPNet
obtains global representations at various levels based on WRN features to scale recovery units, providing
the network with original data again. This generates pixel-level predictions identical in size to input
data, though limitations include overfitting issues and feature loss problems in WRN modules. When
layers increase, performance degrades, leading to a fixed setting of 4 layers, which may not consistently
provide optimal results for all images.

In [6], authors proposed a novel cascaded U-Net for brain tumor segmentation where complete
tumors are segmented first, followed by inner tumor region segmentation. Residual blocks provide
auxiliary supervision, facilitating gradient flow during training and transmitting high-resolution infor-
mation for improved tumor localization from shallow to deep network layers. However, this approach
encounters overfitting due to additional gradients causing model overfitting. The densely connected
U-Net cascading architecture encodes and decodes tumor segments and sub-regions between dilated
convolution layers for deep feature learning and improved tumor localization. While different augmen-
tation techniques address overfitting issues for better segmentation accuracy, class imbalance problems
remain unaddressed, limiting tumor accuracy improvements compared to previous works [7].

Subsequently, [8] employs this model for encoding identified lower-level characteristics and decoding
obtained higher-level characteristics. This integrates with a newly developed Global Attention model
for learning deep feature maps with high-level error precision. However, ignoring overfitting and class
imbalance issues results in inadequate intra-structure segmentation of brain tumors. To address this,
authors in [9] proposed a Middle Supervision Deep Residual Dilated Network (RDM-Net) for learning
deep network layers without resolution loss while eliminating vanishing gradient problems. Various
spatial fusion blocks preserve detailed information for small tumors, and middle supervision modules
with proposed pyramid and multi-hierarchical loss reduce training time and information path distances,
providing better segmentation results. However, this approach is unsuitable for different input image
sizes and loses contextual information.

In [10], a novel multimodal three-dimensional segmentation algorithm based on nested dilation
networks (NDNs) enhances low-level features but is limited by class imbalance issues and inability to
segment edema portions of brain tumors. Later in [II], inception modules allow networks to learn
richer representations, though data imbalance affects the proposed model for whole-brain slices since
tumor pixels are relatively few, impairing the system’s segmentation capability. AGResU-Net models
combining attention gate units and residual blocks in U-Net architecture prove useful for brain tumor
segmentation. Since Two-dimensional U-Net models have limitations in fully utilizing 3D MRI data
information, AGResU- Net loses significant background information and local details between different
slices. Additionally, limited labeled images for Deep Learning systems create differences between brain
tumor segmentation approaches and new MRI scanning systems [12].

This attention gate residual U-Net utilizes attention gate modules to modify skip connections,
benefiting small-scale brain tumor segmentation and enhancing salient features. The 2D HTTU-Net
architecture, an automated technique introduced in [I3], includes two tracks accounting for various
tumor sizes, each using different kernel sizes and varying convolution blocks. However, memory lim-
itations exist due to multimodal MRI images and complex structures, with time-consuming training
stages. The Multi-Features Refinement and Aggregation architecture in [I4] creates new platforms for
effective semantic feature information utilization through feature re-extraction and efficient data cre-
ation. For tumor enhancement, it performs poorly because the proposed end-to-end model determines
entire images, while patches are primarily based on other counterpart techniques. Recently, [15] au-
thors proposed automated brain tumor segmentation using encoder and decoder v-net for multi-scale
feature extraction. Squeeze and excitation blocks added to each encoding and decoding stage focus
on feature recalibration processes, enhancing useful feature maps and salient spatial locations to im-
prove segmentation accuracy with reduced computation time. However, their model loses contextual
information, reducing segmentation accuracy.
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Figure 3: TransResU-Net Model Workflow Diagram.

3 Materials and Methods

This study proposes a strategy for brain tumor classification. Recently, numerous brain tumor seg-
mentation techniques have been proposed, but improvements remain necessary. Brain tumor seg-
mentation processes involve several complexities due to rapid development [16]. Tumor segmentation
identification in initial stages represents a challenging task due to critical noise, unclear boundaries,
unwanted context, complex shapes, and intensity variations. Semantic gaps exist due to conventional
skip connections in U-Net architecture that cannot effectively aggregate features; therefore, residual
skip connections are employed for improved feature aggregation. To address these issues, we propose
the TransResU-Net model trained on brain tumor datasets. We first provide a brief model overview,
then detailed discussions of various model modules in subsequent sub-sections [I7]. The model utilizes
transfer learning with residual skip connection U-Net architecture trained on the TCIA dataset as
shown in Figure 3]

3.1 Enhanced U-Net Architecture

We propose a Trans U-Net architecture for model implementation by merging U-Net and VGG16
architectures with residual connections, implemented on Google Colab with GPU: 1xTesla K80, fea-
turing 2496 CUDA cores and 12 GB GDDR5 VRAM space. This model was developed using brain
MR images from The Cancer Imaging Archive dataset, which includes manual FLAIR abnormality
segmentation masks. The Cancer Imaging Database (TCIA) provided the image collection, discussing
110 patients from lower-grade glioma patient groups with available fluid-attenuated inversion recovery
(FLAIR) sequencing and genomic cluster data in The Cancer Genome Atlas (TCGA) [18|, shown in
Figure 4l Image samples are preoperative for 110 patients, providing MRI post-contrast, FLAIR, and
pre-contrast samples. Manual segmentation on FLAIR MRI images produced corresponding tumor
masks. MRI images are stored in TIF format files with corresponding manually segmented tumor
masks available publicly. Missing series exist for some pre and post-contrast images (6 and 9 respec-

ID: MLHI/V31-22 )



Machine Learning for Human Intelligence Vol. 3, Issue 1

tively) including FLAIR sequences. With 256 x 256 pixel resolution, MRI data per patient varies from
approximately 20 to 88 images, displaying brain boundary areas [19].
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Figure 4: TCIA Dataset Sample Images with Corresponding Masks.

Images from the TCIA dataset undergo preprocessing where the initial stage crops unwanted regions
from MRI scans referring to non-tissue areas, with each patient’s corresponding tumor mask images
cropped per patient. After cropping, to preserve image aspect ratios, cropped images are padded with
zeros and resized to 256 x 256 pixels [20]. MRI images and tumor masks complete cropping, padding,
and resizing processes. Intensity level scaling between 0 and 255 is applied, then pixel values are
adjusted between 1 and -1, where -1 represents non-tissue regions. In all tumor masks, non-zero pixel
values equal 1. After processing, 3121, 1373, and 1748 represent total numbers of images, tumor images,
and normal tissue images respectively across all patients. Data augmentation techniques improve
training data size by generating updated images from original datasets. This approach introduces
variations that enhance model learning ability and better generalization for future unseen data [2I]. The
model generalizes by adding training dataset variations and becomes less prone to overfitting. Various
data augmentation techniques are employed: horizontal flip set to true, height shift at 5%, rotation at
20%, width shift at 5%, shear at 5%, zoom at 5%, and fill mode set to nearest, as shown in Table [1}
After applying preprocessing and data augmentation to MRI images, they proceed through TransResU-

Table 1: Data Enhancement Techniques (Model Implementation)

TECHNIQUES VALUES
HORIZONTAL FLIP True
HEIGHT ADJUSTMENT 0.05
ROTATION ANGLE 0.2
WIDTH ADJUSTMENT 0.05
SHEAR TRANSFORMATION 0.05
ZOOM FACTOR 0.05

FILL METHOD Nearest

Net Architecture where actual tumor segmentation occurs. TransResU-Net Architecture consists of
Encoder (upsampling), Decoder (downsampling), and Residual paths between encoder and decoder
[22]. In TransResU-Net, pre-trained encoders are used in U-Net Architecture. Pre-trained models
are employed in transfer learning approaches. Given VGG-Net and U-Net architecture similarities,
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this study selects a hybrid of these powerful architectures where VGG-Net replaces U-Net’s encoder
path. Using pre-trained encoders enhances training processes. The VGG-16 model was pre-trained as
an encoder on the TCIA dataset. Since lower levels focus more heavily on basic feature extraction,
lower-level weights have greater impact on transfer learning assignments. Higher layer weights are
dedicated to advanced feature extraction for target missions. Given these details, we utilize only the
first 7 layers of VGG-16 in encoder modules to maintain lightweight architecture [23]. When training
data is used, this UNet-VGG16 method freezes contraction layers to prevent weight layer changes.
Instead, we utilize VGG16 model convolution layer weights. The goal is to reduce computational
processes and shorten model training time. Encoder (downsampling) paths include convolutional layers
relying on skip connections using three convolution layers. Network size remains minimal using 2 x 2
max-pooling functions. ReLU activation functions remove negative values from networks. Initially,
grayscale images are converted to 3-channel images, then entered into main encoders for pre-trained
encoder compatibility. The first two encoder blocks contain two sets of 3 x 3 convolutions with ReLLU
activation and max-pooling layers [24]. Final encoder blocks differ by having three 3 x 3 convolutions
instead of two sets. Input layer size is 256 x 256 x 1, and output layer size is 256 x 256 x 1, representing
sigmoid activation feature convolution layers. Image segmentation visualization processes under current
proposed architectures for contracting VGG-16 layers in encoder paths.

TransU-Net Architecture Process

Figure 5: Encoder and Decoder Path.

Another module called Modified Skip Connection, termed Residual Skip Connection, is utilized.
The innovative skip connection method propagates spatial details from encoder to decoder paths, in-
troduced by U-Net architecture. FEncoder layers until max-pooling and corresponding decoder layers
after upsampling are typically connected by these connections [25]. Encoders and decoders suffer
semantic gaps when original skip connections are used and feature aggregation is not performed ac-
curately, despite preserving diffused spatial features. Basically, after final upsampling and before first
max-pooling, decoders are connected by skip connections. In this context, despite undergoing less
computation, encoder module features are considered relatively primitive features. Conversely, fea-
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tures generated from decoder units are claimed to become more developed as they undergo extensive
processing. Using convolution block chains within skip connections to eliminate semantic gaps is an
excellent idea. Residual paths are connections that reduce these problems, then three decoder blocks
from decoder modules as shown in Figures [f] and [f] Two 3 x 3 convolution layers with ReLU acti-
vation are used in both upsampling blocks. We use nearest neighbor upsampling as it is efficient for
restricted items at desired output form surfaces. Consequently, relevant encoded features from residual

The Vanishing Gradient Problem
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Figure 6: Residual Path used in Skip Connection.

connections are combined with features from final convolution layers within decoder blocks. Expected
output masks are then produced by final decoder layers, together with 1x1 convolutions and sigmoid
activation. In segmentation model FLAIR, masks are used in processed MRI data. Processed manual
segmentation masks serve as ground truth for models. Processed images and masks are divided into
training and test data for segmentation model training and validation. With learning rates equal to
5 x 1075, Adam optimizers are used. Loss functions are represented by model metrics, dice similarity
coefficients (DSC), with negative values. Batch size was 8, with 40 different epochs. Image groups are
imbalanced since normal tissue images overall exceed tumor images. We construct loss functions with
weights representing ratios of pixel levels in manual segmentation masks provided for ground truth to
reduce class imbalance concerns and improve tumor image mask estimation. In MRI images, segmenta-
tion models can recognize tumors at pixel levels by providing tumor mask predictions displaying tumor
location, shape, and size. Tumor detection systems are proposed at image levels to identify image data
as normal cells or tumors using corresponding tumor masks generated by modeling frameworks. MRI
images are classified as normal tissue using this method if linked tumor masks have null values for
every image pixel, and if related tumor masks have non-zero image pixels. Average DSC values are
then obtained for test data. Complete model working using TransResU-Net.
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Figure 7: Complete TransResU-Net Model Architecture.

In training for parameter estimation, Adaptive Moment Estimator (Adam) optimization is employed
in this study. Adam represents a hybrid of RMSProp and AdaGrad approaches. To preserve single
learning rates for all weight changes, Adam uses stochastic gradient descent. Consequently, learning
rates are guaranteed to remain constant during training procedures. Learning rates are preserved
and separately modified as learning for each network weight (parameter), as shown in Figure |7l Loss
function binary classification setups use binary cross-entropy. Binary cross-entropy blends sigmoid
activation and cross- entropy loss. Results are displayed in graphs for both training and validation.
Training and validation dice coefficient loss for the model is 0.0043, as shown in Table [2| with training
and validation dice coefficients at 99%.

3.2 Performance Evaluation

For reducing class imbalance problems, we use two loss functions: WCE and GDL, abbreviated as
Weighted Cross Entropy and Generalized Dice Loss. These are described below:

L
1
WCE = > Wigik log(pir) (L)
i k=1
2 (Z,-L:l Wi Y gikpik)
S wi Yo (gik + Pik)

where L represents total label numbers and K denotes batch size. Weight assigned to the i‘h label is
indicated by w;. For network model assessment, we compared our proposed system’s Dice Score with
other latest architectures. Dice score values closer to 1 indicate greater precision, while values closer to
0 reflect less precision. Dice Scores reflect correlations between model-segmented images and Ground

GDL=1-

(2)
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Truth segmented images. In the 0-1 range, segmented maps (S) and ground truth (P) lie. Below, the
Dice Score Equation is shown.

. 2|SNP|
Dice Score(S,P) = —— 3
(S, P) ST 1P] (3)
Dice Score = 2> 1P (4)

2xTP+FP+FN

Equation numerator (3) represents elements found in two sets, while subsets of sets belonging to value
1 are S and T. For network detection precision, Equations 4 and 5 represent dice scores at true positive
and false negative accuracy levels. Accuracy is the most widely used metric for model evaluation, known
as scores generated during class generalization. How accurately can models generalize themselves?

TP
Di -
ice Score TP L FN (5)
TP+ TN
A - 6
Y = TP Y TN+ FP+ FN (6)

As indicated in Table [3| we separated datasets into three sections for system training: training data,

Table 2: Training and Validation Performance Metrics

PARAMETER TRAINING VALIDATION

Dice Coeflicient 99.4 99.1
Loss Value 0.0043 0.0041

validation data, and test data. Individual MRI patches were created and subsequently separated into
training, validation, and testing data sets. We had initial learning rates of 0.01.

e We used ADAM optimizers for device initialization. Generally, Adam optimizers are used as
substitutes for classical stochastic gradient missions. This enables networks to refine weights
iteratively. We used ADAM optimizers because they are well-suited to large dataset challenges.

e We have cross-entropy for loss functions. For this assignment, binary cross-entropy fits best.

Table 3: Model Hyperparameters

Stages Hyper Parameters Values

Regularization Batch Mean=0
Normalization(2D) Standard
Deviation=1.1

Epochs 16
Parameters of System Batch Size 16
Optimizer Adam=0.01

4 Results

We initially introduce three brain tumor segmentation benchmarks used for model assessment, followed
by basic explanations of data pre-processing methods. Then, assessment criteria and implementation
descriptions are provided in subsequent sub-sections. Finally, comparative experimental results of
models are reported and addressed on three benchmarks.
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4.1 Dataset Description

The Cancer Imaging Archive dataset was utilized in our research. This dataset includes brain MR im-
ages with manual FLAIR abnormality segmentation masks from TCIA. The Cancer Imaging Database
(TCIA) provided image collections. They reference 110 patients who are part of lower-grade glioma pa-
tient groups with at least FLAIR sequences and genomic cluster data available in The Cancer Genome
Atlas (TCGA). Tumor genomic clusters and patient information are found in data.csv files. Preoper-
ative image samples are for 110 patients and include pre-contrast, post-contrast, and FLAIR images
from MRIs. [34] performed manual segmentation and correspondingly generated tumor masks using
FLAIR MRI images. Relevant manually segmented tumor masks and MRI images are offered in TIF
format files, with MRI samples made publicly available for post-contrast and pre-contrast images re-
spectively. Missing series exist for some pre and post-contrast images (6 and 9 respectively). It includes
FLAIR sequences. With 256 x 256 pixel resolution, MRI data per patient differs from approximately
20 to 88 images, displaying brain boundary areas.

4.2 Data Processing Pipeline

For TCIA datasets, initial steps involve removing non-tissue portions from MRI by cropping corre-
sponding tumor mask images from each patient’s images. Following cropping, cropped images are
padded with zeros to maintain image aspect ratios before resizing to 256 by 256 pixels. MRI images
and tumor masks complete cropping, padding, and resizing processes. Intensity level scaling between
0 and 255 is applied, then pixel values are adjusted between 1 and -1, where -1 represents non-tissue
regions in images. In all tumor masks, non-zero pixel values equal 1. After processing, 3121, 1373, and
1748 represent totals of all patient images, tumor images, and normal tissue images respectively.

4.3 Implementation Details

We conducted experiments for model 1 on Google Colab for proposed model evaluation. With GPU:
1 x Tesla K80, featuring 2496 CUDA cores, Google Colab provides 12 GB GDDR5 VRAM space. In
TransResU-Net architecture for parameter estimation, Adaptive Moment Estimator (Adam) optimiza-
tion is used in this research. In this research, we compared segmentation results of our TransResU-Net
architecture with other state-of-the-art networks. Segmentation results of our proposed TransResU-Net
architecture are shown: first is input images with provided segmentation masks (areas where tumors
are present) and third images are final segmentation predicted results as shown in Figures |8 and @]
UNet (baseline) architecture represents 80% Dice Score. UNet models provide promising results for
Dice scores and give top results for whole tumor accuracy. Other architectures using transfer learn-
ing have good dice scores at 84 percent but compared to our architecture, their accuracy lags at 92
percent. Other CNN architectures do not provide promising dice score and accuracy results at 78
and 71 percent respectively as given in Table 4} In Trans-VGG16 architecture, their accuracy is 96%.
Our proposed architecture shows increases in terms of accuracy and dice score for whole tumors. In

Table 4: Performance Evaluation and Accuracy Assessment

METHODOLOGY DICE COEFFICIENT ACCURACY
U-Net (Baseline) 80 85
U-Net (DLA) [26] 82 87
Trans-Net [27] 84 92

CNN [28] 78 71
Trans-VGG16 [29] - 96
TransResU-Net (proposed) 83 99.76

this research, our proposed architecture achieves promising results with other state-of-the-art architec-
tures. We divided datasets into 4 parts where sets 3 and 4 achieve dice coefficients of 97 and 99 percent
respectively. Wide Residual Network and Pyramid Pool Network (WRN-PPNET)-based multimodal
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Figure 8: Training Accuracy.

brain tumor image segmentation compared to other approaches using pixel-wise prediction to segment
glioma results in 91% accuracy. In other U-NET using Multi-Level Upsampling in decoders, they use
multi- level upsampling to obtain more features resulting in 87% accuracy for segmented whole tumors.
Nested Dilation Networks (U-NET) used dilated convolutions instead of plain convolutions to learn
better features and improved tumor localization resulting in 70% dice coefficients because they ignore
class imbalance problems. Further, Attention Gate ResU-Net and HTTU-Net achieve dice coefficients
of 87 and 86 percent respectively. As comparison results given in Table [, our method is better than

other state-of- the-art methods, achieving 98 percent dice coefficient for whole tumors.

Table 5: Dice Score Performance Comparison

DICE COEFFICIENT

METHODOLOGY

Nested Dilation Networks (U-NET) [10] 70%

Attention Gate ResU-Net [12] 87%

HTTU-Net [13] 86%
98%

ResU-Net (Proposed)

5 Conclusion

Several recent studies have used fully convolutional networks for brain tumor segmentation; however,
in these networks, decoder paths lack sufficient low-level features from encoder paths for proper image
reconstruction. In this study, we proposed a transfer learning residual U-Net model with two architec-
tures: U-Net and VGG-16. VGG-16 is integrated into encoders for better image reconstruction and
adds residual paths in skip connections for illustrating salient feature details, thus disabling unwanted

12
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Figure 9: Segmentation Results.

and distracting feature responses that facilitate segmenting small brain tumors. These were trained on
different datasets and achieve competitive performance with other brain tumor segmentation methods.
In ResU-Net with modified residual skip connections and batch normalization layers, we use original
convolutional layers. Experiments prove that ResU-Net achieves greater metric values than FCNN.
When compared to existing U-Net models, proposed models perform better with lowest loss values
and highest Dice Coefficient values. Segmentation outcomes using proposed methodologies frequently
and extremely effectively address Region of Interest objectives for each brain tumor MRI image. By
using 2D U-Net models, some contextual information is lost, so future work will explore 3D U-Net for
better segmentation performance. Future research could use unique architectures or convolution block
scenarios to find additional alternative models.
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