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broader IoT ecosystem, this research concentrates on smart office infras-
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Our research objective is to demonstrate the capabilities and potential
of advanced big data analytics within intelligent office environments to
improve operational efficiency. We integrate four compelling technolo-
gies—sensors, cloud computing, big data, and loT—to establish ben-
eficial synergies for enhanced functionality and implementation. Our
proposed architecture for sensor service management provides real-time
estimates of energy consumption for each node within an intelligent
communication network. We evaluate our real-time solution against
conventional systems using relevant throughput metrics and energy uti-
lization parameters. The results indicate that our real-time intelligent
office solutions can guide the development of efficient smart workplace
environments.

1 Introduction

The concept of the "Internet of Things" (IoT) has revolutionized the digital landscape through its
innovative integration with substantial advances in computing and communication technologies [I].
IoT-based systems have transformed daily work operations by providing intelligent and efficient envi-
ronments through device interconnectivity, autonomous operation, collaborative outcomes, and com-
prehensive measurements [2]. The IoT plays a vital role in monitoring and controlling "Intelligent
Office Management" systems [3]. The massive data volumes (ranging from terabytes to hundreds of
petabytes) generated by these networked devices constitute what we term "big data" [4]. The rapid
convergence of microelectromechanical systems (MEMS), wireless networks, and digital electronics ne-
cessitates IoT management of the enormous data volumes produced by both industrial and individual
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users [5]. This IoT expansion has profoundly influenced the big data ecosystem. Nevertheless, nu-
merous opportunities emerge for real-time analysis of the substantial data generated by IoT sensors
[6]. These opportunities encompass IoT applications in residential, social, healthcare, and industrial
contexts within pervasive or intelligent environments through wearable devices or remote monitoring
systems. However, energy consumption in smart offices remains underexplored [7]. As technology
advances, big data analytics becomes increasingly complex due to data collection and processing from
diverse sensors within IoT environments. Industry research forecasts that big data benefits will drive
market growth to 125 billion US dollars by 2019 [8]. IoT analytics encompasses the processes in-
volving extensive data extraction from IoT sensors, revealing new insights, correlations, patterns, and
previously unnoticed trends [9]. Big data analysis facilitates control and management for both indi-
viduals and organizations. loT-based Big Data emerges from the convergence of these two distinct
technological domains [I0]. Figure [I|illustrates the architecture of intelligent massive IoT systems.

Building a Smart loT Architecture
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Figure 1: Smart Big IoT Architecture.

Wireless Sensor Networks (WSN) technology has been implemented to establish IoT environments
supporting this initiative. It typically employs limited wirelessly connected sensing devices commu-
nicating via the internet with constrained resources [II]. These compact devices, connected to other
networks through routers and internet infrastructure, are also called motes (nodes) of wireless net-
works, designed to collect and transmit data and information. These IoT nodes provide simultaneous,
continuous data streams from multiple endpoints, offering advantages including real-time network fail-
ure detection and ease of installation and operation [12], [I3]. However, the primary power limitation
for these sensor nodes typically stems from their batteries. Various energy-efficient solutions, including
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wind, water, and solar smart grids, have been implemented to address this challenge [14, [15].

Data analytics is essential to address this issue and deliver efficient data services through various
sensors in IoT environments by determining energy consumption for each node. According to [16],
the requirement for real-time (efficient) analysis of this interconnectivity leads to substantial data
management solutions, utilizing unique requirements such as volume, velocity, and variety beyond
conventional network infrastructure and processing capabilities [I7]. Our research goal is to integrate all
aforementioned technologies to provide an effective solution supporting smart systems in environments
that are affordable, comfortable, secure, welcoming, and scalable [I8,[19]. This study focuses specifically
on intelligent offices due to numerous IoT data management applications, with relevant work discussed
in [20]. The main contributions of the proposed model include:

e Creating an intelligent, energy-efficient communication network capable of collecting and process-
ing large sensor data volumes while maintaining minimal electricity consumption as this study’s
primary purpose.

e This research combined four compelling technologies—IoT, Cloud Computing, Analytics, and
Big Data—with important sensor visualization foreshadowing predictive care mechanisms.

e This study provided the analytical sensors’ service management framework for IoT layers of smart
offices.

e This study compared each node’s throughput and energy consumption with typical systems. This
represents the first effort to offer low-power, real-time estimation for office intelligent communi-
cation networks.

This article is structured as follows: Section 1 covers the background and motivational perspective.
Section 2 provides a concise literature overview covering survey articles published in the IoT and big
data analytics fields. Section 3 presents the contribution. Section 4 conducts a comparative analysis.
Section 5 discusses [oT network criteria. Section 6 presents the proposed architecture for sensor service
management. Sections 7 and 8 implement Contiki OS and evaluate results according to efficiency
standards. Section 9 provides an ideological perspective for future research as we conclude the report.

2 Related Work

IoT encompasses various innovative trends and technologies facilitating the integration of numerous
existing technologies, including Bluetooth, Wi-Fi, RFID, Zigbee, and Wibree [2I]. Technologically
advanced industrialized nations have realistically adopted IoT to enable citizen connectivity for enter-
prise development. Research scholars have comprehensively surveyed and examined diverse big data
analytics and IoT challenges across various applications in available literature [22 23]. While different
technologies are employed to construct domain-specific intelligent environments, identifying and de-
termining communication network effectiveness remains a significant challenge [24]. Despite numerous
previous studies, we found that the real-time effectiveness of intelligent and robust offices has not
been explored regarding IoT and big data analytics. The primary objective is to understand various
approaches used in managing and controlling sensor-generated data collection. An Integrated Infor-
mation System (IIS) based on Big Data, Cloud Computing, IoT, and Geo-Informatics was proposed
by [25] for environmental monitoring and management. Various embedded sensors and databases were
utilized in the data collection process. A highly accurate correlation between multiple environmental
factors was discovered, demonstrating the proposed system’s effectiveness |26 27].

A survey by [28] demonstrated that various IoT technologies are employed for monitoring purposes.
While implementation details are not provided, [29] addresses energy harvesting reduction in smart
homes using detection techniques and control strategies to observe real-time occupancy status from
sensors. Real-time estimation of minimal energy usage is included. Reference [30] presented a proposal
for an electrically supported real-time data collection system for e-bikes. The e-bike system incorporates
multiple wireless sensors and GPS units, effectively providing contextual data. The proposed model’s
implementation was tested on thirty cycles, yielding positive results for real-time data perception,
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demonstrating IoT efficiency in cycling environments. Georgia Tech developed a "track-stitching"
technique to identify and measure various smart environment activities using pressure, optical, and
RFID tags. A pattern-matching technique was developed to identify various objects and locations.

Consequently, [31] suggests using a sequential learning model in the Mav project, combined with
Independent Lifestyle Assisting (ILA) to determine multiple pattern behaviors in smart environments.
The authors included several industrial applications for this technology, resulting in effective surveil-
lance [32]. Beyond the mentioned literature, current smart office research focuses on traditional service
management systems. Efficient, sustainable, and intelligent interconnectivity of office objects is also
necessary [33]. Most work in currently available studies has focused on data processing from laboratory-
based offices. Following scalability and applicability requirements, traditional RDBMS solutions were
employed for constraints, processing, and storage [34], [36]. Since Pakistan lacks IoT establishments,
this issue must be addressed by obtaining accurate measurements of intelligent, networked workplace
environments. We must investigate creating sensor-based, networked smart offices with effective and
sustainable network connections using recent analytical big data developments [37]. Most smart office
applications inadequately describe and focus on sensor intercommunication and performance. How
were individual events determined? Most custom protocols, such as Data Distribution Service (DDS)
and Message Queue Telemetry Transport (MQTT), operate in the topology background and are spe-
cific to sensor-equipped devices [38] B9]. To understand business insights in intelligent workplaces,
determining proper sensor data collection and processing methods is imperative. This data can inform
future findings and research for examining and analyzing critical decisions and events. Big data ana-
lytics is required for the office’s evolutionary processes [40]. Therefore, our goal is to outline the big
data analytics promise and potential in smart offices to enhance daily operations.

This research utilized a cloud server to construct a method for collecting time series or massive,
continuous data streams from optical sensor movement. This research examined interconnected node
energy consumption over various periods, then analyzed anomalies using efficient analytics and cloud
computing benefits, including increased storage capacity, efficiency, affordability, scalability, durability,
reliability, and flexibility to enable preventive care mechanisms in smart offices [41], 42]. Currently
published literature does not provide each smart office node energy consumption relevance. Since
every communication network node consumes substantial energy, energy consumption represents a
significant challenge [43]. A comparison between our proposed method and standard communication
systems is provided. Our proposed solution contributes to efficient services and minimal energy usage.

3 Materials and Methods

IoT’s exponential growth means data processing, administration, and storage must adapt to analyze
sensor data. This study must identify the most promising requirements for real-time smart office de-
ployment to manage massive data volumes produced by heterogeneous IoT devices (sensors). Table
lists these specifications. All aforementioned requirements must be met to construct smart office
networks. These goals were accomplished following successful implementation. The authors selected
Contiki OS, offering various low-power and affordable hardware solutions. Multiple sensors are con-
nected to each remote node, providing data across various time intervals. This study created various
topologies following specifications to develop intelligent networks.

As shown in Figure [2] we created an intelligent massive IoT device architecture networked to fa-
cilitate effective data transfer from remote sensors. The IoT framework comprises three divisions:
Perception, Network, and Application layers. Each framework tier executes necessary operations for
network communication [44]. First, the framework’s lowest layer is the perception, sensing, or recogni-
tion layer [45]. This layer’s primary function is sensor data acquisition. It gathers useful information
from IoT networked environments, including RFID, WSN, real-world objects, heterogeneous devices,
temperature, humidity, lighting, etc., then converts actuator data into a digital representation. It
facilitates interconnectivity by providing a distinctive identity for real-world objects, devices, or things
for communication across short-range technologies, including RFID, Bluetooth, Low Power Personal
Area Networks (LoWPAN), Near Field Communication (NFC), and Bluetooth as communication layers
[46]. Various communication technologies connect IoT devices and assist in data aggregation, including
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Table 1: Experimental Requirements
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Global Positioning System (GPS), bus, Wi-Fi, microwave ovens, RFID, ZigBee, HDTV actuators, and
Barcodes [47].
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Figure 2: Framework of Smart Offices.

One critical component of this layer is the nodes’ mobility using routing table information and
gateways. It evaluates node power usage along anonymous channel error detection paths. This com-
munication layer establishes communication flow. The network, also called the transmission layer,
sits between perception and network layers and is referred to as this structure’s brain. According to
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[48], this layer performs necessary processing and assists in securing data transmission from sensors
to applications and servers. This layer primarily offers gateway-based IoT convergence with wired
or wireless communication networks [49]. Heterogeneous devices are linked with distinct addressing
capabilities via routing tables for cooperative networks storing data on cloud servers and conducting
analytics to extract information from data across various IoT platforms. This proposed framework
manages the enormous Big Data volumes released by various sensor types. IoT sensor service man-
agers effectively arrange optimal paths for all communication. Every control and management level
has been integrated; real-time simulation operates within this framework and offers helpful insights
into large data reception and transmission in interconnected communication device networks [50].

However, Figure[2|demonstrates successful communication. Incoming big data is examined on cloud
servers and relayed to the necessary sensors following findings. Three office branches are readily visible,
connected by routers. This phenomenon results from the Internet Engineering Task Force (IETF) [51]
imposing IPV6 or LoWPAN protocols on various wired and wireless technologies, including fiber optic,
Wi-Fi, 3G, 4G, and Public Switched Telephone Network (PSTN). To implement this framework, we
created a network architecture with random positioning. This enables smart office environment creation
by facilitating effective and sustainable communication between various nodes with greater throughput
and reduced power consumption. This framework’s top layer assists users by providing application
access and customized services as needed. It manages data and services generally and transforms
various applications or services differing in digital signal environments. It then provides managers with
computed high-level application knowledge, including weather forecasting, office management, smart
grid systems, security alarms, mobility, health or disaster monitoring, fortune, ecological and medical
environment control, and transportation with overall global management [52]. It offers consumers
visuals and services according to their needs and facilities for all connected end users. The entire
process will be implemented to build real-time intelligent offices providing vital sensor, power, and
network throughput information.

3.1 Contiki Simulation

Contiki (Instant Contiki 2.7) is an operating system used for real-time data collection and processing.
A. Dunker investigated this existential approach to intelligent environments, and we built a smart
office topology with numerous nodes (Motes in Contiki) to perform the necessary real-time simulation.
Contiki is an open-source operating system offering various applications to simulate network envi-
ronments and guarantee benefits, including data extraction, storage, collection, and transmission via
communication networks [52]. It provides low-cost, low-power massive data collection through small
device interconnection. Specified simulation and outcomes were achieved using one emulator, Cooja.
Multiple sensors generate enormous big data volumes transmitted from our current network in real-
time to servers. Additionally, as illustrated in Figure [3] Cloud servers effectively deliver appropriate
analysis, called knowledge discovery to several nodes simultaneously based on incoming data. Sensors
produce significant data volumes sent to cloud server gateways [52]. Every node activated LED (Light
Emitting Diode) lights to transfer information across devices. Multiple windows in Figure [3| display
corresponding simulation results of intelligent workplaces.

First, as visible in the window’s upper left corner, the network structure connects multiple sensor
motes collectively. Second, the following window provides simulation control buttons including start,
pause, stop, and reload, along with total duration and speed [5]. The following box offers recording
significant measurements for future reference. Third, the purple-backed window displays each mote or
node output with unique IDs assigned based on programming-based classification. We used the IPv6
protocol with low-power Personal Area Network (6LowPAN) to construct an intelligent environment
topology. To obtain Pcap files for transmitted network examination, select that menu option. All
communication information between nodes, including protocols used for intermediary communication,
is available in the radio message pane. Additionally, because IPv6 Internet Control Message Protocol
(ICMP) is used, all radio messages provide complete payload data in bytes [I5]. To display more radio
duty cycles, power trackers of simulated individual transmission (ITX) and individual receiving (IRX),
along with radio services, are displayed in the window’s right bottom corner and in Table The
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Figure 3: Simulation through Cooja Emulator of Contiki OS.

transmitted data’s overall heap and stack flow are displayed in the stack pane. This Cooja emulation
tool calculates percentages for each mote individually and collectively, including average percentages.
Table [2| contains all simulation measurements plus designated transmission and receiving percentages
for each node. We selected sky-type motes for network simulation, offering 8 MHz MSP430 micro-
controllers with 48 KB flash memory and 10 KB RAM. These motes feature additional capabilities,s
including network transceivers with sensors operating wirelessly and providing advantages such as
2.4GHz, 250 Kbps, and IEEE 802.15.4 Chipcon for temperature, light, and humidity measurements,
battery indicators, and sensor power control. Optional 6-pin SMA antenna expansion is available [35].

By inputting border router IP addresses into browsers (Firefox), as indicated on Figure S right
side, Contiki OS applications provide router and neighbor information for communication protocols.
It provides information from other sensors, such as temperature (240C) and light (248), when IPv6
addresses of any device are entered into browser search bars [33]. Light sensors use illuminance (LUX)
measuring units to determine relative distance (Onasch and Spero 2018). The last window with various
colored lines displays all node chronology, and Serial Socket windows provide server-side connections
with byte numbers communicated over networks. 6LowPAN was selected because it enables radio
frequency communication with low-powered IPv6 versions at physical layers [33]. We included border-
router programs with sky motes to ensure necessary outcomes. We collected and accessed most recent
sensor-generated data using sky-websense.c applications. Integrated web servers power this real-time
application. Tunslip6 utility tools connect routers across networks to external worlds using Cooja. All
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Table 2: Power Traces of each mote at different positions

Network’s Mote | Radio Service(%) | Radio Transmission (%) | Radio Receiving (%)
Sky 1 99.98% 0.05% 0.10%
Sky 2 0.88% 0.14% 0.00%
Sky 3 0.72% 0.02% 0.00%
Sky 4 0.74% 0.02% 0.01%
Sky 5 0.73% 0.02% 0.00%
Sky 6 0.74% 0.03% 0.01%
Sky 7 0.73% 0.02% 0.00%
Average 14.02% 0.05% 0.03%

windows began receiving the necessary data once the simulation was launched. Power consumption
analysis facilitates easy observation of communication network efficiency [13].

Figure 4: Result of Light and Battery Voltage.

4 Results and Analysis

The simulation produced expected efficient transmission outcomes. Our designed topology began
operating over web servers once we pressed the start buttons, and all network motes (sensors) began
generating real-time big data. This data travels over cloud web servers in Cooja emulators built on
Contiki. Experimental outcomes provide mote ping information. Calculated outcomes divide into two
categories: power measurements and sensor measurements concerning intelligent network connectivity.
Results corresponding to these categories are discussed below.
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4.1 Sensor Measurements

As shown in Figure [4] the simulation distributes sensors’ real-time data over networked integrated
systems within predetermined "Time" and "Celsius." First, we have average temperatures for every
node at 615.9 degrees Celsius at 100% humidity. Battery indicators are 1 for every low-latency node.
We have results for light and battery voltages used by sensors during communication. Each sensor has
attached LEDs blinking when receiving transmitted data; fluctuating light data is exhibited concerning
time. Battery consumption over voltage ranges between 0.00 and 0.50, indicating very low battery
voltage usage for each node. Every node is represented by colors, and overall graphical shapes show
back-and-forth transmission fluctuations.

TTX =TX1=TX2=TX3=TX4=TX5=TX6=TX7 (1)

In Equation [I] TTX represents Total Temperature Transmission, and TT is node 1’s temperature. This
temperature is identical for all nodes when viewed collectively to determine average temperatures for
all motes.

TBI = BIl =BI2=BI3=BI4= BI>=BI6=BIT7 (2)

In our given real-time simulation situation, TBI defines Total Battery Indication as in Equations [2] -
which is identical for every node. Bl denotes node 1’s battery.

TPX = TPR+TPL (3)

TPX =1244 + 0 = 1244 (4)

Total packets transmitted (TPX) equals total packets received plus total packets lost along communi-
cation networks. Equation [Sindicates that the Packet Delivery Ratio (PDR) is 100

PDR(%) = Total ReceivedPackets/TotalTransmitted Packetsx100(4)PDR = 1244/1244%100 = 100
()

4.2 Power Analysis

Several methods accomplish overall power analysis. Power history graphs provide comprehensive power
usage scenarios for all nodes based on power consumption measured in megawatts. It illustrates
reduced overall usage compared to slower systems. Various histograms demonstrate power utilization
by different sensors [I1], including immediate power usage and average power consumption with each
node’s radio duty cycle. Instantaneous and average power consumption sections illustrate overall power
usage by multiple elements. Yellow color represents radio transmission, green represents radio listening,
blue represents Control Processing Unit (CPU), and red represents Longest Prefix Match (LPM).
LPM, or low power consumption algorithms, allows IP address connections to the routing tables [I§].
In typical radio duty cycles, blue portions represent average message transmission while red portions
display ping information from nodes listening to messages. We offered real-time simulated comparisons
of two IoT environment-based topologies: the proposed system (topology indicated above) and a basic
topology representing typical systems. The typical system operates under the User Datagram Protocol
specifically and has seven nodes [I4]. Additionally, the two systems’ protocols differ, reflected in
the results. Several protocols were employed to quantify relative differences, indicating 6LowPAN
outperforms conventional systems in performance. Relative differences in networked node throughput
and energy usage are displayed in this comparison. The period is identical for both topologies; total
packets sent and received, plus packet loss are easily visible. Results show our proposed system
offers higher network transmission throughput concerning megabytes (MB) sensor data sizes, meaning
sensors communicate more effectively than typical systems, where throughput is comparatively low.
Subsequently, energy consumption comparisons between the usual and proposed systems are presented
for each node. It shows that compared to conventional systems, all proposed system nodes’ energy
consumption is comparatively low. When our simulation ends, all sensor network communication is
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Figure 5: Energy Consumption at each Node.

preserved in Contiki OS composite files containing sent packets with ".pcap" extensions for packet
capture. Wireshark programs can open and view these files, displaying network traffic metadata. The
selected line in Figure [5| contains all protocol details, including frame size, standard, payload, time,
and connection duration. Using various Wireshark tools, we can examine traffic for sensor network
control management using this information.

4.3 Comparative Evaluation

Different intelligent environment topologies and architectures were examined based on real-time im-
plementation in earlier research. As Table [3] illustrates, we differentiated earlier research to offer a
comparative analysis of the reviewed literature with their unique methodologies. Authors of [43] pro-
vided localized frameworks for smart home data processing that are effective. Creating localized sensors
can effectively represent the surrounding interdependencies of linked sensors. This framework offers
optimum bandwidth power consumption forecasts based on information. Using historical communi-
cation patterns, it provides real-time defect detection and tolerance for sensors in IoT-based smart
homes. This real-time connection eliminates redundancies and provides information about usage pat-
terns and power consumption. To understand security measures, writers of [43] addressed massive
data management and collection problems for IoT environments using cloud computing. To efficiently
deploy smart cities through IoT devices and real-world user interfaces such as RFIDs and smartphones,
authors addressed convergent domains of IoT and Cloud Computing [42]. An IoT-based cloud com-
puting framework is suggested. Smart buildings are designed and implemented using intelligent and
adaptable automated controllers [11]. According to compliance, this proposed solution improves user
experience by increasing energy efficiency, comfort, and safety. It offers fast plug-and-play installation
situations for automated smart building applications. Authors of [34] discussed location-aware interior
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Table 3: Comparative analysis of Smart Big loT

References | Communication Protocol | Observational Environment | Architecture
[15] - Localized v
[42] COAP Localized v
[28] ZigBee Localized & Generalized v
[11] AIBSBAC Localized & Generalized v
[10] BTLE Localized v
[34] SFP Localized v
[43] ZigBee Generalized v

architecture to improve visitor experiences. The system’s design offers cultural materials to verify
wearable device image recognition and localization capabilities. To publish environmental events on
social networks responding to user demand, this proposed work archives multimedia materials on cloud
servers.

Singularity architecture is proposed in [52] to prototype science fiction-style scenarios investigating
biological development behavior. Parametric digital manufacturing and modern technologies are com-
bined with intelligent building design using morphogenetic methods. A morphogenetic framework is
suggested to account for the design team’s debate implications. In [43], urban planning is covered con-
cerning big data analysis in smart cities. Hadoop frameworks are suggested to handle four smart city
data collection stages. MapReduce has been integrated with Hadoop for data management [51]. Based
on Table 3] significant numbers of previously mentioned articles offer relevant work addressing Quality
of Services (QoS) issues. Similarly, most writers discussed the effectiveness of smart monitoring in both
localized and broader environments. Only two papers addressed security issues, while five contained
transmission speed issue [43]. Through various communication protocol types, we can see that relevant
prior research work has been carefully evaluated in this publication. This leads to the conclusion that
while Correspondence Protocol is a typical issue, each system type’s precise goals vary [43]. In con-
clusion, we suggest a new topology aligned with smart office frameworks. These addresses improved
issues, including efficiency, low power consumption, big data management, increased throughput, low
latency, and high transmission speed compared to typical systems. This real-time smart office imple-
mentation offers deployment projections for non-developing nations like Pakistan. Sensor big data is
effectively collected and processed while maintaining minimal energy consumption [43]. As seen from
the aforementioned literature, the protocol known as 6LowPAN (Low Power Wireless Personal Area
Network) of IPv6 has been used in our real-time office application. While currently published litera-
ture uses various techniques for power and efficiency estimation in different applications, our approach
utilizes Contiki OS [13].

5 Conclusion

Managing linked nodes effectively and efficiently has become more challenging due to big data. To
combine their features and provide better solutions, we surveyed the most promising communication
technologies, including sensors, cloud computing, big data, and IoT. Following [oT tiers, we offered a
unique architecture for managing sensors in smart office installations. We demonstrated that our pro-
posed architecture can facilitate effective network communication by building efficient sensor networks
using simulation findings described above, which correspond to typical systems. A list of requirements
outlining their requirements for office real-time implementation has been provided. We integrated IoT
into interconnected sensor networks as part of real-time communication systems. It then effectively
collects and communicates temperature, humidity, light, and movement data useful for smart office
management. Users can access and manage data following distant networks to take necessary action
when needed. For example, if remote users notice movement in workplaces after business hours, they
can address it by taking appropriate action. Comparative analysis is carried out by carefully reading
literature reviews, and we integrated smart office environments into real-time simulation using Contiki
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0OS’s Cooja emulator to collect and transmit data efficiently using wireless technology. Data analysis,
which we compared with typical systems, validates the network’s successful efficiency. With reduced
energy usage, our system offers improved sensor data collection and administration efficiency. To con-
struct intelligent environments, we plan to explore various machine-learning techniques combined with
security algorithms in our future work. We will compare various implementation solutions for sen-
sor data predictability. We will evaluate various protocols’ effectiveness to assess their relative power
consumption, sustainability, and efficiency using different sensor characteristics. We will use several
machine learning algorithms to perform analytics on sensor-collected data. We will attempt to build

effective, safe, and scalable networks using various technologies.
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