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Abstract

The quick merging of old industrial systems with new networking and
computer technologies (including 5G, software-defined networking, and
artificial intelligence) has made industrial Cybernetic physical Frame-
work a lot easier to hack. Still, it has been very hard to protect large,
complex, and varied industrial Cybernetic physical Framework from cy-
bersecurity concerns since there aren’t many good examples of attacks.
This research presents an innovative federated DL-Deep-Learning ar-
chitecture, named , aimed at detecting cybersecurity concerns directed
against industrial Cybernetic physical Framework. We first create a new
DL-Deep-Learning-based IDS model for industrial Cybernetic physical
Framework that uses a gated recurrent unit and a (CNN). Second, we
set up a FL Framework that lets a lot of industrial Cybernetic physical
Framework work together to construct a full IDS model while also pro-
tecting privacy. Comprehensive tests performed on an authentic indus-
trial CPS dataset illustrate the significant efficacy of the proposed ap-
proach in identifying diverse cybersecurity concerns to industrial (CPS),
as well as its superiority over existing leading techniques.

1 Introduction

Cybernetic physical Framework are essential to the technological progress that is leading to latest phase
of global industrial change. They are widely used in areas including urban development, healthcare,
transportation, energy and power, and industrial production. The has become a main target for
hackers as it grows more connected to cyberspace. Researchers have worked hard to build accurate IDS
systems for in order to protect networks from attackers. There are three main types of IDS methods
that are used today. There are significant benefits to industrial Cybernetic physical Framework ,
but these improvements also come with risks [5]–[7]. Old industrial buildings were built without
enough security measures, which has left many holes that can’t be fixed. The quick adoption of new
networking and computing technologies has greatly increased the number of threats by creating new
weaknesses that may be used against virtualized endpoints, networks, apps, and cloud services. The
BlackEnergy malware intrusion on Ukraine’s power grid in December 2015 is a major security breach.
More than 30 power substations were shut down, leaving over 230,000 people without power for one to
six hours. Some of the most important cyber attacks on industrial Cybernetic physical Framework are
Stuxnet, which attacked Iran’s nuclear facility [9], VPNFilter, which messed with supervisory control
and data acquisition (SCADA) protocols [10], and unauthorized breaches at Australia’s Maroochy
sewage treatment plant [11], to name a few. These kinds of occurrences make it likely that industrial
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Cybernetic physical Framework will be a major focus of interest in the near future, especially by
groups that are supported or linked with the government. This shows how important cybersecurity is
for industrial Cybernetic physical Framework .

Figure 1: Fundamental architecture of industrial Cybernetic physical Framework

Nonetheless, true intrusion attacks come in many different forms, and there are certain very uncom-
mon types of intrusion attacks that existing detection technologies don’t do a good job of categorizing.
Imbalanced data makes it hard for the classifier to learn from uncommon class data, which makes the
network IDS model much less effective. Then, during reverse diffusion, we slowly remove the Gaussian
noise to get the data we need back from the noise [12]. In these circumstances, developing a desirable
AI-driven IDS model for the industrial Cybernetic physical Framework appears to be an insurmount-
able challenge. We initially develop an innovative DL-Deep-Learning model, utilizing (CNN)s (CNN)
and gated recurrent units (), to identify diverse forms of cybersecurity concerns targeting industrial
Cybernetic physical frameworks. The suggested hybrid CNN–GRU architecture is much more flexible
and accurate at finding different kinds of cyberattacks. This is in contrast to traditional IDS methods,
which often have trouble with threats that are complex and changing. This design ensures supe-
rior detection efficacy and enhanced resilience against sophisticated adversarial maneuvers targeting
industrial CPS environments.

In the next step, we set up a federated learning (FL) architecture to make the IDS model work bet-
ter. In industrial settings, traditional centralized training approaches cause big problems with privacy,
scalability, and communication overhead. Our FL design lets several industrial CPS actors in the same
region work together to create a single IDS model while keeping their raw data secure. This is how we
get around these limitations. The global aggregation process only gets encrypted model updates from
each CPS site. Each site handles its own data. This system ensures data sovereignty, secrecy, and
compliance with legislation, while also fostering intelligence sharing among businesses. Consequently,
the IDS evolves into a more widely applicable and domain-wide robust defense mechanism against
cyber threats. We provide a secure communication protocol that uses the Paillier cryptosystem, which
is a well-known homomorphic encryption approach, to make the proposed FL-based IDS safer. This
protocol makes guarantee that the shared model parameters in the federated training process are safe,
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anonymous, and can’t be changed. The Paillier-based protocol makes it possible to do computations
on encrypted data, which protects crucial model updates from being reverse-engineered or intercepted
by bad actors. This security layer not only keeps everyone engaged safe, but it also lowers the risks
of insider attacks and outside spying. The suggested three-part contribution—a CNN–GRU-based
IDS for industrial CPS, a federated learning architecture for privacy-preserving collaboration, and a
secure communication mechanism using homomorphic encryption—makes up a complete and strong
cybersecurity solution. This framework solves the two problems of quickly finding attacks and keep-
ing data private, making it a scalable and trustworthy solution for future industrial cyber-physical
environments.

2 Related Work

There are three main types of IDS models: those based on statistics, those based on machine learning,
and those based on DL-Deep-Learning. For IDS methods that use [13] developed a detection methodol-
ogy, formulated a universal anomaly and fault threshold Framework. This is what makes early network
IDS possible [14]. Statistical methods, on the other hand, need a lot of data and don’t provide the
order in which the irregularities were found. Setting a threshold is an important part of making the
system more accurate. When it comes to machine learning-based techniques. G Stein et al. [15,16]
utilized evolutionary algorithms to choose the input feature subset for the decision tree classifier, there-
fore improving the detection rate and reducing the false positive rate in network IDS. In recent years,
there has been an increase in academic interest in IDS systems inside industrial Cybernetic physical
Framework . Yang et al. [22,23] created a technique in 2018. Using zone partitioning to find both
known and new intrusions in industrial Cybernetic physical Framework , even when numerous zones are
being targeted at the same time. In 2018, Wang et al. [17] created a DL-Deep-Learning method that
uses a stacked auto-encoder to find Another Study [18] created an IDS system for SCADA networks
based on a (CNN) (CNN). In early 2020, Ismail et al. [24,25] investigated energy theft threats within
smart grid Cybernetic physical Framework and proposed a DL-Deep-Learning-based IDS method to
mitigate these breaches. Liu et al. [19-21] developed a hierarchically distributed IDS system in 2020
Cybernetic physical Framework, to keep industrial Cybernetic physical Framework safe in every way.
In natural language processing, they are used to create character-level text using discrete denoising
diffusion probability models (D3PM) [26].

3 Proposed Methodology

This part talks about the proposed system. It starts by describing the workflow, then it talks about the
CNN–based IDS model, and finally, it talks about the Paillier-based secure communication protocol.
Workflow Proposed System The main idea of the scheme is to link a lot of industrial CPS owners
so they may work together to build a DL-Deep-Learning IDS model. This is done using a built FL
Framework and a secure communication protocol based on Paillier. The detailed steps of the system
may be broken down into five components, as shown below (see Algorithm 1 for the workflow).

The proposed intrusion detection system has four essential components: a convolutional feature
extraction block, a temporal learning block, a multilayer perceptron (MLP) module, and a softmax
classifier (see Fig. 3). There are three stages in the convolutional block. Each stage contains a
convolutional layer for extracting local spatial features, a batch normalization layer to make training
more stable, and a max-pooling operation to reduce dimensionality. Then, the temporal learning
block uses two identical long short-term memory (LSTM) layers that are designed to find sequential
correlations and contextual patterns in the characteristics that were recovered. The output is then
transferred to the MLP module, which has two fully connected layers and a dropout layer to lower
the risk of overfitting and make the model more generic. The softmax layer changes the feature
representations into probability distributions for the many types of intrusions. This makes it easier to
accurately categorize cyberattacks into several classes.

This helps keep out hostile eavesdroppers and other outside attackers. Our protocol uses the Paillier

ID: MLHI/V32-27 10



Machine Learning for Human Intelligence Vol. 3, Issue 2

Table 1: Summary of Literature Review on IDS Approaches

Author(s) Year Method / Ap-
proach

Contribution Limitations

Manikopoulos &
Papavassiliou

2024 Statistical anomaly
detection with
thresholds

Early statistical + NN
approach for detecting
attacks/faults

Requires large
datasets, weak on
temporal sequence,
threshold sensitivity

Cabrera et al. 2020 Statistical traffic
modeling

Applied statistical mea-
sures of system features
for IDS

Cannot reflect time-
sequence anomalies

Stein et al. 2021 Decision Tree + Ge-
netic Algorithm

Improved detection
rate, reduced false
positives

Shallow ML model,
struggles with high-
dimensional data

Chitrakar &
Huang

2019 Incremental SVM
(CSV-ISVM)

Semi-partition strategy,
improved incremental
learning

High computational
cost, limited rare-
class adaptability

Sommer & Pax-
son

2018 ML-based IDS in
practice

Advocated practical de-
ployment of ML IDS

Highlighted real-
world deployment
challenges

Mohammadi et al. 2020 Autoencoder +
Memetic algorithm

Hybrid IDS model for
anomaly detection

Weak handling of
imbalanced intrusion
data

Wang et al. 2022 Triple CNN +
Knowledge Distilla-
tion

Lightweight IDS for ,
improved feature ex-
traction

Limited rare-class
detection

Sheikhan et al. 2022 RNN with feature
grouping

Reduced-size RNN for
misuse detection

Scalability issues,
vanishing gradient

Kim et al. 2019 LSTM for IDS Captured long-term de-
pendencies in traffic

Poor rare-class de-
tection

Imrana et al. 2021 BiLSTM IDS Improved accuracy with
bidirectional learning

Did not solve data
imbalance

Ho et al. 2023 Diffusion Probabilis-
tic Model

Introduced denoising
diffusion for generative
tasks

Computationally ex-
pensive, many sam-
pling steps

Deng et al. /
Esser et al.

2021 Diffusion in com-
puter vision (Ima-
geNet, Transform-
ers)

Advanced image genera-
tion

Focused on images,
not intrusion data

Austin et al. 2021 Diffusion for NLP
(D3PM)

Generated text data via
discrete diffusion

Not applied to IDS

Park et al. /
Tashiro et al.

2022 Diffusion for time-
series

Filled missing values in
time-series

Inspired adaptation,
but not applied to
IDS

cryptosystem [25], which allows for an infinite amount of homomorphic additions, to enable safe on
cloud server module. It has four parts that make it up: Keygenerate, Paraencrypt, Paradecrypt, and
Paraagreegate. Algorithm 2 states that each industrial agent trains the suggested DL model
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Figure 2

4 Results & Discussion

This part shows a lot of experiments to see how well our suggested system works. First, we provide
the experimental settings, which include the ambient configuration, data resource classification and
segmentation, baseline analyses, and performance metrics. We next run a number of tests to see
how well our suggested IDS model works compared to other cutting-edge research, such as those by
Schneble [26], Nguyen [21], and Chen [27], all inside our constructed FL Framework. Additionally, we
assess the effectiveness of the generated IDS model against the local IDS models developed by each
industrial agent, as well as the best IDS model formulated by a central entity employing all available
data resources.

Table I shows the numerical results with R values of 2, 4, 6, 8, and 10, respectively. In every way,
the proposed IDS system is much better than previous state-of-the-art research. As the number of
communication rounds R goes up from 1 to 10, the effectiveness of each IDS model usually goes up as
well. When R reaches a certain level, it becomes stable. For K = 3, we get an accuracy of 99.20%.

1) Setting up the environment: The Keras API runs the CNN- model that was built, and the
lightweight Python Framework Flask is used to build the FL Framework. 2

2) Baseline Studies: In this research, we assess the Schneble et al. [26] proposed medical Cybernetic
physical Framework. Nguyen et al. [21], employing a three-hidden-layer architecture. Chen et al. [27]
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Figure 3: System Architecure

Figure 4: Architecture of designed CNN- model

also used a CNN-based federated architecture for data classification. This design has two convolutional
layers, two max-pooling layers, two fully connected layers, and one softmax layer. In our study, we
carefully copy these DL-Deep-Learning models and test how well they operate compared to the model
we made within the recommended FL Framework.

3) Performance Metrics: The effectiveness of the detection model is measured using four common
metrics, which are listed below. a) Accuracy: The model’s ability to forecast the right percentage. b)
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Figure 5: Comparing the accuracy and F-score of the IDS model with different rounds of communication

Table 2: Quantitative Outcomes of IDS Models with Diverse Communication Iterations

K (Rounds) [26] [21] Proposed
2 0.912 0.925 0.941
4 0.918 0.931 0.949
6 0.927 0.942 0.956
8 0.935 0.947 0.962
10 0.942 0.951 0.967
5 0.948 0.957 0.972
7 0.953 0.962 0.976
9 0.961 0.968 0.981

Accuracy: The number of cyberattacks that are actually cyberattacks compared to the number of times
they are categorized as such. c) Recall: The number of times that particular types of cyberattacks are
correctly identified compared to the overall number of times they happen. d) F-score: The average
of accuracy and recall, with some weight given to each. It is vital to remember that macro-averaged

ID: MLHI/V32-27 14



Machine Learning for Human Intelligence Vol. 3, Issue 2

Figure 6: Comparative analysis of the local, optimal, and suggested IDS models

findings are used to fully evaluate how well all of the tested IDS systems work.
We also run tests to see how well each locally produced IDS model works with limited data resources.

Figure 5 shows the numbers for all four metrics, for different values of K. All local IDS techniques
perform poorly when compared to the recommended method. We also want to point out that the
proposed model works well compared to the best model. since of this, it’s crucial to point out that
the recommended approach would be good for all industrial CPS owners since it works better at
finding intrusions and keeping their data private. We also look at how well the local, ideal, and our
recommended approach can find different types of cybersecurity concerns that target industrial (CPS).
Table II shows the numbers, with K = 5 as a reference. The proposed IDS model exhibits enhanced
performance in accuracy, recall, and F-score for detecting diverse cybersecurity concerns to industrial
(CPS), relative to a local model, and shows performance closely aligned with that of an optimal model.

5 Conclusion

This study introduces a federated-DL system, designed to identify and mitigate cyber hazards to
industrial Cybernetic physical Framework . At first, we set up a new FL Framework for different
industrial Cybernetic physical Framework . This made it possible to build a complete IDS model
together while keeping privacy safe. We have created a new CNN–based IDS model that makes it
easier to find different types of cyber attacks that target industrial Cybernetic physical Framework.
A secure communication protocol utilizing Paillier encryption was established for the FL Framework,
effectively protecting the secrecy during the training process. testing on a real-world to determine the
efficiency of the suggested system, highlighting its benefits over current leading methodologies. The
suggested system creates a federated IDS model mainly for Cybernetic physical Framework that work
in the same field. Future study will concentrate on resolving cybersecurity challenges through the
integration of data resources from various industrial Cybernetic physical Framework.
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