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Abstract

Conventional image steganography centers on embedding one image
within another to evade detection by unauthorized parties. Coverless
image steganography (CIS) improves imperceptibility by omitting the
use of a cover image. Recent studies have employed text prompts as
keys in Contrastive Image Synthesis via diffusion models. The swift
advancement of generative models has initiated a novel approach in
steganography known as generative steganography (GS). It facilitates
message-to-picture creation without requiring a carrier image. This in-
ternationally recognized biometric facial recognition technique is exten-
sively utilized in numerous identity verification systems. This research
offers a novel coverless steganography framework for face recognition
photos based on a diffusion model, aimed at enhancing personal privacy
protection and ensuring the secure transmission and sharing of sensi-
tive information without compromising user experience. We propose a
Coverless Semantic Steganography Communication system utilizing a
Generative Diffusion Model to conceal hidden images within generated
stego images. The semantically associated private and public keys allow
the legitimate receiver to accurately decode hidden images, while the
eavesdropper, lacking the entire and accurate key pairs, is unable to ac-
cess them. Simulation outcomes illustrate the efficacy of the plug-and-
play architecture across several Joint Source-Channel Coding (JSCC)
frameworks. The comparative results under various eavesdropping risks
indicate that, at a Signal-to-Noise Ratio (SNR) of 2.03 dB, the peak
signal-to-noise ratio (PSNR) for the legitimate receiver exceeds that of
the eavesdropper by 4.14 dB.

1 Introduction

Steganography is an extensively researched subject that seeks to conceal messages such as sounds,
images, and text within a single container image in an imperceptible manner. In its reverse operation,
only receivers equipped with an accurate revealing network can reconstruct secret information from
the container, which visually resembles the host. In image steganography, conventional techniques fre-
quently employ adaptive encoding based on distortion costs formulated by humans or neural networks,
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necessitating established norms and expertise. Steganography, a significant aspect of information con-
cealment, concentrates on embedding sensitive data inside the redundant areas of digital covers to
provide unnoticeable transfer and secure storage [1].

In addition to cryptography-based encryption methods, researchers investigate covert communi-
cations for SemCom, which seek to protect against eavesdroppers by obscuring the communication
patterns between lawful transmitters and receivers. The authors integrated multi-agent reinforcement
learning to facilitate collaboration among devices and jammers in identifying susceptible eavesdrop-
pers, consequently formulating solutions that collectively optimize semantic information transfer and
power regulation [2]. The authors developed a covert SemCom framework for Unmanned Aerial Vehicle
(UAV) scenarios by the combined optimization of flight trajectory and transmission power. [3] pre-
sented a covert SemCom system that accommodates several modalities, including text, pictures, and
audio. It utilizes a power control mechanism that guarantees the efficacy of clandestine communication
while also attaining superior semantic decoding quality. The internet revolution has greatly enhanced
communication while also presenting issues in protecting messages transferred online. Steganography
is a widely utilized method for concealing information within a container in an inconspicuous manner.
Consequently, only authorized recipients can extract the information from the steganographic material
[4].

Image steganography, a subset of this discipline, focuses on concealing hidden messages within
images, providing a significant level of security and privacy. It is applicable in various domains, such
as picture compression, secure communication, and cloud computing. Conventional cover-based picture
steganography techniques conceal the hidden message within a cover image by modifying its statistical
characteristics. Upon the disclosure of the cover image, the concealed message can be readily identified
by steganalysis [5]. Conversely, coverless image steganography (CIS) seeks to encode or map the
confidential message directly into a stego image, rather than altering a cover image. Consequently,
it exhibits superior imperceptibility relative to cover-based approaches. Nonetheless, three obstacles
emerge when endeavoring to execute generative steganography utilizing the diffusion model [6].

Diffusion models fail to generate high-quality images when Gaussian noise is replaced with confi-
dential data in the spatial domain, resulting in a disruption of the Gaussian noise distribution. The
aggregation of slight inaccuracies in the spatial domain across the forward and backward processes of
the diffusion model leads to a decrease in the extraction precision of confidential data [8]. To maintain
the input distribution of generative models, many generative steganography techniques employ reject
sampling to transform secret data into a Gaussian distribution, thereafter generating stego pictures
with pre-trained generative models [9]. This facilitates secure communication between the sender and
recipient by solely disseminating the StegoDiffusion model and the concealing technique. The principal
contributions of our GSD plan are as follows:

• We believe we are the pioneers in exploring the problem of generative steganography utilizing
DDIM (GSD).

• We suggest concealing secret messages within the frequency domain of Gaussian noise, therefore
mitigating the effects of cumulative errors in the time domain on the concealed data.

• We introduce a diffusion model specifically tailored for steganography, termed StegoDiffusion. It
facilitates a bidirectional linkage between stego pictures and stego latents.

• In real applications, GSD demonstrates advantages over current approaches, particularly in at-
taining enhanced extraction accuracy with equivalent payloads.

2 Related Work

Steganography Based on Cover Objects. In steganography, images are frequently favored over text
as carriers due to their capacity to convey substantial amounts of information. Recent years have
witnessed substantial progress in the domain of image steganography. Wang et al. [10] developed two
approaches to update the embedding cost of quantized DCT coefficients, thereby improving JPEG
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steganography by examining the similarity of natural image content. In contrast, Yin et al. [11] have
introduced a separable fine-tuning network design that is resilient to rounding operations and can
significantly mitigate the deterioration of image quality while diminishing the decline in steganalysis
efficiency. Li et al. [12] introduced a steganography technique utilizing an artificial immune system,
enhancing security and ensuring precise retrieval of concealed data. A prevalent drawback of these
steganography techniques is the necessity to perpetually counteract steganalysis programs. The emer-
gence of coverless steganography presented a more secure resolution to this issue.

Traditional picture steganography entails concealing hidden information by altering the cover im-
age. Data embedding can be categorized into spatial domain embedding and frequency domain em-
bedding techniques, based on the data domain. Spatial domain embedding steganography was the
initial method devised, characterized by the direct modification of pixel values in the carrier image to
conceal a secret message. Common spatial domain embedding steganographic algorithms encompass
the Least Significant Bit (LSB) steganography algorithm [13], the Least Significant Bit Match (LSBM)
steganography algorithm [14], and the random modulation steganography algorithm. Steganographic
techniques that employ frequency domain embedding frequently utilize JPEG images as carriers. JPEG
compression utilizes the Discrete Cosine Transform (DCT) method to incorporate a concealed mes-
sage into the DCT coefficients. The initial algorithm, JSteg, substitutes the least significant bit in
DCT coefficients. F5 [15] seeks uniform distribution, while nsF5 mitigates histogram-based detection.
Outguess utilizes a dual-round approach to synchronize DCT coefficient histograms between cover and
stego pictures. Nevertheless, altering the cover image ultimately results in distortion, which can be
readily identified by steganalysis.

The diffusion model, first introduced by Sohl-Dickstein et al. in 2015, has gained significant popu-
larity due to its strong generative powers in areas including picture production, restoration, and trans-
lation. Its adaptability enhances and modifies digital photos proficiently. Nonetheless, the model’s
principal limitation is the extended duration of training and inference, necessitating exploration of
optimization methodologies. The latent diffusion model (LDM) improves efficiency by facilitating
high-resolution synthesis for various conditional inputs, such as text or bounding boxes [16]. The text
inversion technique enhances model controllability by recreating user-defined ideas from a limited num-
ber of images [17]. Methods such as masked picture editing and DreamBooth facilitate individualized
content generation, whereas cue-based image editing systems permit prompt-driven image alteration.
The research of Huang et al. investigates sophisticated techniques for regulating diffusion models [18].
The prospects for diffusion-based, coverless image steganography appear favorable owing to the model’s
swift advancement and robust generative capabilities.

Figure 1: Comparative analysis of the local, optimal, and suggested models.
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3 Proposed Methodology

Two fundamental processing mechanisms: the concealment process and the disclosure process as shown
in Figure 1. The concealed image is what I wish to obscure. To accurately regulate this process, the
FaceParsing model is employed to extract the mask from the concealed image. The mask, together
with the concealed picture, is integrated into the steganographic image via a concealment process [19].
The transmission of steganographic images over the Internet may lead to a decline in image quality
due to multiple circumstances, culminating in a compromised steganographic image. Nonetheless, the
disclosure procedure can still be integrated with a mask to get the restored image from the compro-
mised steganographic image, preserving the semantic integrity of the content. This paper proposes a
framework architecture that emphasizes several essential attributes:

• Utilizing a mask allows for exact regulation of the resulting image’s content, hence mitigating
the influence of external factors such as the background. This guarantees that steganographic
images possess both substantial content and high visual quality.

• Concealment techniques are engineered to be challenging to identify visually, even when con-
fronted with steganographic instruments.

• The revealing process can still produce semantically compatible restored images from a damaged
steganographic image, even if it differs somewhat from the original [20].

Figure 2: Diffusion model that use deterministic inference.

The forward process in DDIM[36] is delineated by the subsequent equation 1. The reverse sampling
procedure of DDIM is delineated by the subsequent the equation 2.

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, 1) (1)

xs& =
√
ᾱsfθ(xt, t) +

√
1− ᾱs − σ2

sϵθ(xt, t) + σsϵ, fθ(xt, t)& =
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
(2)

The diffusion model employs deterministic DDIM, which lowers the model’s complexity while en-
hancing its predictability and controllability. Pre-trained noise estimators are utilized to meticulously
regulate the noise removal process, consequently enhancing the quality and efficiency of the overall
image creation as given in Figure 2. This technology enables the efficient acceleration of the image-
generating process while preserving the excellent quality of the produced photos. The equation de-
lineating the sampling procedure utilizing the pre-trained noise estimator. DDIM Inversion delineates

ID: MLHI/V32-28 22



Machine Learning for Human Intelligence Vol. 3, Issue 2

the process in which the original image x0 is transformed into a latent code xT, which is then returned
to the original image, resulting in an output image designated as x0, nearly equivalent to x0 [21, 22].

4 Results & Discussion

Moreover, our steganographic photos facilitate the smooth alteration of character attributes, including
gender, age, and facial hair, with a significant level of precision. Regarding controllability (shown in
Figure 6), our method may execute steganography in some regions while preserving the integrity of
other parts. Utilizing the private key to accurately maintain the semantic information of the confiden-
tial image, exhibiting exceptional fidelity. Among these, PSNR and SSIM indicate that a higher score
for both metrics correlates with superior quality of the reconstructed image [25].

Simultaneously, a lower score in LPIPS, FID, and LDM indicates that the produced image closely
resembles the genuine image in visual perception, exhibiting greater similarity in visual content and
style. This significantly diminishes the likelihood of being recognized as holding steganographic infor-
mation. The results indicate that the procedure is markedly superior to alternative methods on the
baseline. Additionally, to ascertain the applicability of this strategy in real-world scenarios. Choose
two widely utilized facial recognition platforms, Face++ and Aliyun API, as target recognition mod-
els as given in Table 1. Figure 8 illustrates the outcomes of comparison experiments conducted on
the Stego240 dataset, displaying the confidence scores of facial recognition achieved by various meth-
ods across the two models. The experimental results indicate that the face recognition rate for both
the recovered image and the secret image exceeds 96% on Face++, achieving the greatest confidence
level. This further substantiates that our methodology exhibits exceptional adaptability and great
performance across various real-world applications. To assess the efficacy and feasibility of the pro-

Table 1: The produced images using stego were assessed for their resemblance to natural imagery.

Methods BRISQUE↓ NIQE↓ PIQE↓
Baluja 19.43 4.70 15.25
HiNet 18.01 4.88 13.71
HiDDen 17.78 4.94 11.28
WengNet 17.84 5.09 9.54
Cross 10.11 5.15 6.10
Ours 9.85 5.16 5.81

posed method, three facial recognition models—Deep Face, FaceNet, and ArcFace—were employed for
systematic comparison and analysis. The labeling accuracy and facial feature matching on the high-
quality public dataset CelebA-HQ, together with selected recovered image datasets, were meticulously
assessed. Figure 7 displays a sequence of test photographs. The test photos comprise various repre-
sentations of the same individual from the CelebA dataset. The distances among each test image, the
original image, and the recovered image are calculated, and the verification outcomes are presented.
The visual comparison in the picture reveals that the restoration matching results align with the verifi-
cation outcomes of the original image, exhibiting a minimal distance. This illustrates that the restored
image data may adequately substitute the original picture data for facial recognition, and also confirms
the superior recovery quality of the approach from a lateral perspective.

To further illustrate the efficacy of the approach, real-world degradation was also evaluated. To
emulate the effects of network transmission, experiments were performed to transmit and capture
container images on the screen using the WeChat network. As illustrated in Figure 10, under this
intricate deterioration situation, all alternative approaches either fail completely or exhibit considerable
color distortion. Conversely, the approach effectively discloses the overarching content of the concealed
image while preserving substantial semantic coherence with the private key. Once more demonstrating
the preeminence of the technique. In both extreme scenarios, the method attains the maximum
confidence levels of 93.99% (WeChat) and 87.29% (Shoot) on Face++. The proposed method has
also achieved superior reconstruction quality relative to the most recent techniques. The experimental

ID: MLHI/V32-28 23



Machine Learning for Human Intelligence Vol. 3, Issue 2

results comprehensively confirm the efficacy and resilience of the technique across diverse experimental
and real-world settings.

5 Conclusion

The rapid progress of generative models has given rise to a new method in steganography termed
generative steganography (GS). It enables the generation of images from messages without the need for
a carrier image. This globally acknowledged biometric facial recognition method is widely employed
in many identity verification systems. This study presents an innovative coverless steganography
framework for facial recognition images via a diffusion model, designed to improve personal privacy
protection and facilitate the secure transmission and sharing of sensitive information without detracting
from user experience. We present a Coverless Semantic Steganography Communication system that
uses a Generative Diffusion Model to embed concealed images into created stego images.
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