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1 Introduction

According to WHO Global Tuberculosis Report 2020, number of tuberculosis cases in Americas is
slowly growing, with Brazil being main reason for this [1l 2]. Brazil had 96,000 TB cases in that year,
mortality rate of 9%, making it countries with highest tuberculosis. [3] contend that TB functions
as socioeconomic inequality typifies diseases correlated with poverty. poverty rates in Latin America
began to increase in 2015, mostly due to growth of vulnerable populations in characterized by increased
homelessness and incarceration [4].

Despite tuberculosis being a significant infectious disease, it may be effectively cured with prompt
use of appropriate medications. Various kinds of tuberculosis (TB) that exhibit resistance to specific
medications may necessitate administration of many antibiotics, potentially resulting in multidrug-
resistant (MDR) TB, extensively drug-resistant TB, HIV-associated TB, and deterioration [5] of health
systems. most conclusive clinical approach for detecting drug-resistant tuberculosis is microbiological
culture, which can take many months and is a costly operation. Consequently, re exists an urgent
clinical requirement for supplementary approaches capable of swiftly and accurately identifying both
drug-resistant and drug-sensitive types of tuberculosis [0] in a cost-effective manner. One strategy
involves utilizing high-resolution Computed Tomography (CT) imaging to aid doctors in analyzing,
diagnosing, and providing appropriate rapy for tuberculosis patients [7].

Prognosis research examines correlations between result occurrences and predictors within specified
groups afflicted by a disease, namely tuberculosis (TB) [§]. Diagnosis involves identifying an illness
through symptom examination, whereas prognosis pertains to understanding disease progression, pre-
dicting individual risk, and assessing responses to treatment to enhance and minimizing outcomes [9].
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Figure 1: Depiction of varieties of post-primary tuberculosis

Consequently, upon establishing a diagnosis, it is imperative to assess condition to choose most suit-
able treatment options, including hospitalization or admission to an (ICU) [10]. assessment of severity
is crucial for enhancing communication of outcome risk to patients, hence increasing possibilities to
limit illness development, enhance patients’ quality of life, and efficiently manage health resources.
Regrettably, quality of several prognostic studies is substandard [IT].

Tuberculosis may impact several bodily parts, including belly, glands, bones, and neurological sys-
tem, although it predominantly affects lungs. Initially, TB mycobacteria access pulmonary alveoli,
where y infiltrate and proliferate inside alveolar macrophages [12]. To counteract presence of for-
eign germs, human immune system initiates a response to phagocytize inhaled mycobacteria through
alveolar macrophages, facilitating ir interaction with T lymphocytes, a subtype of white blood cell.
Consequently, epilioid histiocyte cells combine and collaborate with lymphocytes to form tiny clus-
ters. Consequently, a mass of granulomatous tissue forms, initiating process of cytokinesis, which
produces proteins such as interferon-vy secreted by CD4% T-lymphocytes (effector T cells) to activate
macrophages for destruction of pathogenic germs [13]. Furrmore, produced CD8" T lymphocytes (cy-
totoxic T cells) can directly eliminate contaminated cells. Neverless, microorganisms are not invariably
eradicated from affected granuloma. In several instances, y become inactive and dormant, resulting in
a latent infection that compromises human immune system [14].

final diagnosis of active tuberculosis is clinically established by detecting presence of M. tuberculosis
bacterium, causal agent of TB, by microbiological culture of human specimens. In practice, culture
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development of M. TB may need an average of two or more weeks. To speed identification of active
tuberculosis (TB), a variety of integrated methodologies will be employed, including tuberculin skin test
(TST), blood tests, amplification of Mycobacterium tuberculosis nucleic acids [15], and morphological
investigations of biological specimens. Although se strategies offer advantages, y lack specificity. For
instance, prevalent method involves identifying acid-fast bacilli (AFB) in sputum smears [7], although
only 44% of all new cases (and even 15-20% of pediatric cases) can be detected. ad hoc choice to
commence anti-tuberculosis treatment is complicated in instances where acid-fast bacilli do not appear
on sputum smear microscopy, despite a clinical suspicion of tuberculosis [16].

Our primary objective is to assess ML models to support tuberculosis prognosis and related decision-
making by predicting mortality risk based on patient demographic, clinical, and laboratory data. Com-
parisons with existing studies are confounded by differing objectives and utilized data. Accordingly,
we evaluate nine ML models employed in existing studies on tuberculosis detection [17].

2 Related Work

pursuit of early tuberculosis detection is a primary objective of global health initiatives, owing to in-
trinsic challenges associated with eradicating disease. Currently, existing research has predominantly
investigated application of deep learning for tuberculosis detection using radiographic [15-17| or micro-
scopic images [18,19]. Several research have investigated application of deep learning. Anor research
[39] proposes and evaluates three ML models: Support Vector Machine (SVM), Random Forest (RF),
and Neural Network (NN). dataset consisted of 4,213 records from an unspecified location; 64.37% of
entries indicated completed treatments. anticipated result from models is treatment completion, and
following metrics were employed for model comparison: accuracy, precision, sensitivity, and specificity.
RF model attained best accuracy at 76.32%, while SVM excelled in precision at 73.05% and specificity
at 95.71%. neural network attained best sensitivity at 68.5%. research [40] utilized an Indian dataset
consisting of 16,975 patient records to categorize adverse outcomes. y categorized mortality, treatment
failure, loss to follow-up, and non-evaluation as belonging to same class. y introduced a deep learning
model called LSTM Real-time Adherence Predictor (LEAP) and evaluated its performance against a
Random Forest model. LEAP attained an AUROC of 0.743, while RF earned 0.722.

A furr research [41] additionally examined several ML algorithms for classification of adverse out-
comes. A multi-country dataset including 587 records of tuberculosis cases was utilized, encompassing
Azerbaijan, Belarus, Georgia, Moldova, and Romania. y assessed three ML models: Random Forest
(RF), Support Vector Machine (SVM) with linear kernel, and SVM with polynomial kernel, in com-
parison to traditional regression techniques, including indicating potential underfitting or overfitting
problems.

Published research on tuberculosis prediction utilizing ML, we employ computational methodologies
to (i) diminish complexity of dataset, and (ii) identify ideal hyperparameter configuration. Additionally,
and importantly, we assess ensemble models. Our research utilizes a comprehensive data collection
from Brazil, a nation with one of highest tuberculosis incidence rates globally. This approach enhances
current understanding of ML in tuberculosis prognosis.

3 Proposed Methodology

We adhered to technique outlined in Figure 2 to benchmark ML models. objective was to identify
optimal model to assist in tuberculosis prognosis. methodology employed in this study encompassed
data set preprocessing; implementation of a feature selection algorithm to diminish data dimensionality;
training models on both imbalanced and balanced data sets; utilization of search technique to identify
application of statistical methods to assess similarity of model distributions; identification of superior
models and creation of an ensemble model; application of statistical techniques for comparative analysis
of best models; and, ultimately, evaluation of models through testing.

SI-NAN database comprised records of patients with conditions specified National. This study uti-
lized information from State of Amazonas concerning individuals diagnosed and treated for tuberculosis
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Table 1: Summary of Related Work on TB Prediction Models

Author(s) | Dataset Methods Outcomes Performance
[23] 37 prediction models | Statistical methods | Treatment  outcomes | 16 models
(LR not considered | (completion, cure, suc-
ML) cess, failure, death, loss,
not evaluated)
[39] 4213 records SVM, RF, Neural | Treatment completion RF Accuracy
Network 76.32
[40] 16,975 patient | Deep Learning | Unfavourable outcomes | LEAP  AUROC
records (LSTM-LEAP), RF | (death, failure, loss, not | 0.743
evaluated)
[41] 587 records RF, SVM (linear | Unfavourable outcomes | High  specificity
& polynomial), re- (94%)
gression  (stepwise,
LASSO)
[42] 6450 TB incidence | DT, Bayesian net- | Treatment outcome pre- | AUC 97%
records works, LR, MLP, | diction
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Figure 2: System Architecure

(TB) from 2007 to 2018, sourced from SINAN-TB. original data set had 36,228 records and 130 fields,
including 35,007 records of patients cured of tuberculosis and 1,221 records of tuberculosis-related
fatalities. All field descriptions are available in SINAN data dictionaries [70]. Data preprocessing was
conducted for cleaning purposes. Post-preprocessing, updated dataset comprised 24,015 entries en-
compassing 38 fields; 22,876 records pertained to patients cured of tuberculosis, whereas 1,139 records
documented tuberculosis-related fatalities. We evaluated efficacy of four feature selection methodolo-
gies (SFS, SFFS, SBS, and SBFS as detailed in Section 3.1) to identify most representative attributes
in original dataset. Subsequently, we diminished dimensionality of data for model processing. Nineteen
fields were chosen for each of nine ML models. This aligns with [44], which utilized identical SINAN-
TB dataset and characteristics picked by an expert. We utilized complete data set and implemented
k-fold cross-validation, setting k = 10 in accordance with references [71-74|. Original dataset indicated
that preprocessed dataset was unbalanced, comprising 22,876 cured patients and 1,139 TB fatalities.
Ensemble approaches develop many ML models to address same issue. Unlike a singular classifier,
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ensemble approaches aim to construct a collection of models and integrate m. Ensemble learning is
sometimes referred to as committee-based learning or multiple classifier systems. amalgamation of
learning models may be conventionally executed in three manners: by averaging, by voting, or by
utilizing a learning model. term ’average’ is typically utilized in context of numerical outputs, when
classifiers yield an output that represents mean of data. A vote entails tallying outputs of classifiers
according to frequency of class occurrences, with class receiving highest votes serving as input for a new
learning model. Feature selection strategies are algorithms employed to identify a subset of fields from
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original database [43]. It is often utilized due to its simplicity and speed [46]. SFFS is an enhancement
of SFS algorithm that incorporates a novel feature, employing SFS technique succeeded by iterative
conditional exclusion of least significant feature inside feature set. ultimate feature set comprises a
selection of most optimal characteristics [47]. SBS begins with entire array of characteristics and
systematically eliminates less relevant ones until a specified closure condition is satisfied [48]. SBFS is
an enhancement of SBS approach that eliminates extraneous features by picking a subset from primary
attribute collection [49]. ML is convergence of statistics and computer science, frequently cited as
foundation of artificial intelligence. This is a learning process utilizing a mamatical model to forecast
outcomes or establish classifications based on past data. se models may be employed in healthcare
sector to ascertain causes, risk factors, and efficacious rapies for diseases, among or applications [51].

4 Results & Discussion

Results indicate that ensemble models, specifically Gradient Boosting (GB) and Random Forest (RF),
consistently get greatest Fl-scores across all feature selection procedures, exhibiting low fluctuation.
Decision Tree (DT) and Support Vector Machine (SVM) exhibit competitive performance, but some-
what inferior to ensemble approaches. Conversely, simpler models like Logistic Regression (LR) and
Naive Bayes (NB) generally provide lower Fl-scores, signifying ir inadequate capacity to discern intri-
cate patterns within dataset. Results indicate that advanced feature selection methods such as SFFS
and SBF'S typically provide slight enhancements in performance relative to more basic SFS and SBS,
suggesting that more adaptable selection procedures are advantageous for enhancing model efficacy.
Table 4 contrasts Fl-macro outcomes of various ML models trained on unbalanced and balanced
datasets. findings demonstrate that dataset balancing markedly enhances performance in nearly all
models. Logistic Regression (LR) and Linear Discriminant Analysis (LDA) exhibit significant enhance-
ments post-balancing, elevating ir F1-macro scores by over 15%. Naive Bayes (NB), albeit exhibiting
considerable improvement, remains inferior to more sophisticated models, indicating its restricted
capacity to delineate non-linear decision boundaries. Conversely, ensemble-based approaches like Gra-
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Figure 3: Fl-macro metrics for ML framework

Table 2: Results of Fl-score (in %)

Model Feature Selection
SFS SFFS SBS SBFS

LR 88.45 (£0.012) | 88.67 (+0.010) | 89.12 (£0.009) | 89.05 (£0.008)
LDA 87.94 (+£0.011) | 88.40 (4+0.010) | 88.75 (£0.008) | 88.69 (£0.007)
KNN 90.21 (£0.006) | 90.48 (4+0.005) | 90.91 (£0.004) | 90.76 (£0.004)
DT 92.10 (£0.004) | 92.34 (£0.003) | 92.65 (£0.002) | 92.51 (£0.002)
NB 86.75 (£0.015) | 87.02 (£0.012) | 87.40 (+0.010) | 87.21 (£0.009)
SVM 91.33 (£0.005) | 91.55 (£0.004) | 91.78 (£0.003) | 91.70 (£0.003)
GB 93.20 (£0.003) | 93.45 (£0.003) | 93.71 (£0.002) | 93.68 (£0.002)
RF 92.80 (£0.004) | 93.01 (£0.003) | 93.29 (£0.003) | 93.20 (£0.002)
MLP 91.92 (£0.006) | 92.15 (£0.004) | 92.47 (£0.003) | 92.40 (£0.002)

dient Boosting (GB) and Random Forest (RF) regularly attain superior performance, with F1l-macro
scores over 93% on balanced dataset. Ensemble method surpasses individual models, illustrating ad-
vantages of amalgamating classifiers. Findings underscore significance of data balancing in predictive
modeling, especially for unbalanced issues like TB prognosis. Although basic models benefit from
balancing, sophisticated ensemble models get superior generalization performance.

5 Conclusion

Tuberculosis remains a considerable cause of morbidity and mortality in several poor and middle-
income countries. When a patient is diagnosed with tuberculosis, healthcare providers must select
most appropriate treatment tailored to patient’s unique situation and expected trajectory of disease,
guided by clinical competence. goal is to predict chance of dying from tuberculosis, which will help
doctors figure out how disease will progress and make decisions about treatment. re were 36,228
records and 130 fields in first data collection, but many of records were missing, incomplete, or wrong.
After cleaning and preparing data, a new dataset was created with 24,000 entries and 37 fields. This
dataset includes 22,875 reported cured tuberculosis patients and 1 140 tuberculosis-related deaths.
Two controlled experiments were designed to examine impact of data imbalance on model performance,
employing (1) unbalanced and (2) balanced datasets.
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Table 3: Fl-macro results (in %)

Model Imbalanced Data Set | Balanced Data Set
LR 58.42 (+0.038) 79.15 (£0.052)
LDA 66.11 (£0.041) 77.34 (£0.057)
KNN 84.25 (£0.028) 90.82 (£0.032)
DT 87.93 (£0.025) 92.41 (£0.040)
NB 55.72 (+0.026) 64.10 (£0.065)
SVM 50.36 (£0.007) 88.92 (+0.037)
GB 90.42 (£0.023) 95.10 (£0.029)
RF 85.91 (£0.019) 93.87 (£0.030)
MLP 88.12 (£0.024) 92.76 (+0.033)
Ensemble 91.02 (£0.020) 95.33 (+0.016)
1000 1000
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Figure 4: Training of ensemble models and related models
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