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Abstract

Ordered data may be handled rapidly, however unstructured data may
require additional time to get results. Sorting is employed for data or-
ganization. This is a fundamental requirement for most applications,
and this step enhances performance. Sorting is a necessity in various
computer applications, such as databases. Over time, computer scien-
tists have produced novel sorting strategies aimed at improving certain
parameters, as well as enhanced variants of current sorting methods.
The primary aim has consistently been to minimize the execution time
and memory usage of sorting algorithms. As digital content proliferates
daily, it significantly motivates academics to develop novel time-space
efficient sorting algorithms. This work delineates preprocessing options
for quicksort and insertion sort to enhance their performance. The ma-
jor purpose of utilizing these preprocessings is to make input data more
suited for sorting algorithm, as most sorting function performs extraor-
dinary for a specific type of input, such as insertion sort works better
on nearly sorted data. The efficiency of existing sorting algorithms has
been evaluated against new preprocessing procedures. The outcomes
with the offered techniques surpass the results of the original sorting
methods. It additionally aids in transforming the worst-case scenario
into the ordinary case. This approach can lower the complexity of nu-
merous algorithms; therefore, it is highly significant.

1 Introduction

An algorithm is a systematic sequence of steps designed to accomplish a certain task, and a computer
requires an algorithm to execute any operation. In computing, programming algorithms are regarded as
highly significant. Various types of challenges may necessitate the invention of one or more algorithms.
Sorting is an issue extensively examined in computer science [1]. The process of organizing data to
enhance clarity and comprehension is referred to as sorting. Data can be organized in either ascending
or descending order. Diverse types of information, including integer and string data, can be allocated
to sorting algorithms for organization in the desired sequence. A variety of standard and sophisticated
algorithms with diverse space and time complexities are documented in the literature [2]. Each sorting
algorithm employs a distinct methodology, allowing for classification into categories such as exchange
sort, insertion sort, selection sort, and merge sort [3]. Sorting has gained significant importance due to
the extensive proliferation of big data in many forms and the increasing diversity of applications. The
speed of execution is contingent upon the functioning of the sorting algorithm, and the efficacy of the
algorithmic mechanism is more critical than the quality of the hardware. Sorting is the initial step in
addressing various algorithmic challenges, since it facilitates fast searching and serves as a fundamental
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component in databases and networks. Current sorting applications are unable to utilize the multi-core
capabilities of modern CPUs and GPUs; thus, a new sorting algorithm is required to fully exploit the
available hardware [15].

In designing an efficient sorting algorithm, several resources are evaluated, with particular emphasis
on time and space considerations. Sorting algorithms are primarily classified into two categories in the
literature: comparison-based and non-comparison-based approaches. Sorting algorithms that utilize
comparisons are classified as comparison-based sorting methods, whereas those that do not employ
comparisons are referred to as non-comparison-based sorts. Numerous academics have endeavored to
enhance the efficiency of existing sorting algorithms to diminish their complexity [17]. Various sorting
algorithms exhibit distinct performance characteristics depending on the nature of the input, and no
universal sorting approach is suitable for all problems; rather, each algorithm is tailored to specific
issues. Several parameters are evaluated when determining the optimal sorting method for a specific
situation [21]. This encompasses the selection of the data structure, the type of data to be processed,
the use of parallelism, the utilization of RAM versus secondary storage, and the decision between high-
level and low-level programming languages for optimal implementation. Elshqeirat et al. introduced an
improved variant of insertion sort called Enhanced Insertion Sort (EIS) utilizing threshold values [22].
The authors proposed an improved version of insertion sort, particularly for extensive data sets. The
suggested approach is stable, adaptable, and easy to implement. The experimental result demonstrates
that the proposed approach is 23% faster than the usual insertion sort.

This study presents innovative preprocessing algorithms for Quicksort and Insertion Sort. The
objective of this preprocessing is to minimize the execution time of sorting algorithms and to prevent
worst-case scenarios. The preprocessing for a certain sorting algorithm is contingent upon the sort-
ing approach employed. Due to the distinct sorting mechanisms of various sorting methods, a single
preprocessing strategy cannot be universally applied to all sorting methods. Each sorting algorithm
operates distinctively based on the nature of the incoming data. For instance, quicksort performs
optimally with randomized input arrays, whereas sequentially ordered data results in its worst-case
scenario. Consequently, quicksort requires preprocessing to shuffle the input data for optimal perfor-
mance. Insertion sort is appropriate for data that is almost sorted; hence, preparation can be conducted
to get the incoming data nearly sorted. The results of original algorithms utilizing preprocessing ap-
proaches have been compared. In both instances, the proposed preprocessing is more expedient than
the original method. We have mathematically demonstrated that the time complexity of the suggested
preprocessing insertion and quicksort has been reduced compared to existing sorting methods.

2 Quick Sort

Quicksort, introduced by Tony Hoare in 1959, is a recursive, comparison-based sorting algorithm that
employs the divide and conquer strategy for sorting. It initially selects an element from the list termed
the pivot and partitions the specified list or array around the pivot element. Subsequent to pivot
selection, the list is reorganized such that those elements smaller than the chosen pivot are positioned
to the left of it. Likewise, components exceeding the chosen pivot must be positioned to the right
of the pivot. Equivalent values may be positioned on both sides. Subsequent to the rearrangement
process, the array of data elements can be partitioned into unequal segments. It subsequently employs
a quicksort method recursively on both sides [23]. Multiple methods exist for selecting a pivot value:

• Select the initial element as the pivot

• Select the last element as the pivot

• Select a random element to serve as the pivot

• Select the central element as a pivot

Quicksort is a comparison-based sorting algorithm that is neither adaptive nor stable; yet, it ranks
among the quickest sorting algorithms in practice. Numerous improvements for quicksort have been
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suggested in the literature, such as those by Aumüller et al. who provided various pivot elements
to enhance the efficiency of quicksort [25], whereas Cederman introduced a GPU implementation of
quicksort [26]. The time complexity of quicksort is O(n log n) in the best and average cases, and O(n2)
in the worst situation [10]. Quicksort employs a fixed additional space with unstable partitioning prior
to executing any recursive call.

Algorithm 1 Quick Sort Algorithm
Require: An unordered collection of n elements
Ensure: An ordered collection of n elements
1: function QuickSort(X, low, high)
2: if low < high then
3: pivot = Partition(X, low, high)
4: QuickSort(X, low, pivot - 1)
5: QuickSort(X, pivot + 1, high)
6: end if
7: end function
8: function Partition(X, low, high)
9: pivot = X[low]

10: i = low - 1
11: for j = low to high - 1 do
12: if X[j] < pivot then
13: i = i + 1
14: Swap X[i] with X[j]
15: end if
16: end for
17: Swap X[i + 1] with X[high]
18: return i + 1
19: end function

3 Insertion Sort

This sorting technique is straightforward and effective for tiny datasets. Insertion sort operates by
evaluating the initial two elements, comparing them, and exchanging them if necessary. It subsequently
selects an element from the remaining unsorted list and places it in its precise spot. This process
continues until all elements are arranged in order. Insertion sort is more appropriate when the list is
almost sorted. The time complexity of insertion sort is O(n) in the best case and O(n2) in both the
average and worst cases, while the space complexity is O(n).

4 Literature Review

This section examines many sorting algorithms and their proposed variants in the literature. Quick
Sort exhibits optimal performance with random data [27]. Sangeetha [28] designed and implemented
the dynamic quicksort algorithm. The authors minimized the delay by 7 to 8 nanoseconds. Thus,
the practical application of CGRA is achieved alongside reduced power consumption and minimized
spatial requirements.

The authors [29] presented a two-way merge sort that integrates the estimation of capacitor currents
under ideal conditions, therefore diminishing computational burden and expediting the sorting process.
To address the non-ideal circumstance, this work proposes an enhanced insertion sort algorithm based
on the two-way merge sort. The proposed solution utilizes the advantages of the MMC control strategy,
which is significantly faster than quicksort.

The authors [30] introduced a novel algorithm derived from the quicksort algorithm. The suggested
technique yields superior outcomes for both small and large datasets. We have observed numerous
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Algorithm 2 Insertion Sort Algorithm
Require: An unordered collection of n elements
Ensure: An ordered collection of n elements
1: function InsertionSort(X, low, high)
2: j = 1
3: while j < n do
4: temp = X[j]
5: i = j - 1
6: while i ≥ 0 and temp < X[i] do
7: X[i + 1] = X[i]
8: i = i - 1
9: end while

10: X[i + 1] = temp
11: j = j + 1
12: end while
13: end function

conventional sorting methods. Every algorithm encompasses its optimal, average, and worst-case time
complexities. Thus, we cannot determine the optimal sorting method only based on the worst-case
scenario. All algorithms possess inherent advantages and disadvantages.

The authors [31] present a comprehensive description of sophisticated sorting algorithms. The
sorting algorithms were developed on 11K GoodRead’s data, and their time and space complexities
were compared. Sorting constitutes the most challenging topic within the field of computer science.

The authors [32] introduced the QuickSort algorithm (QM sort), which is optimally designed for
multi-core CPU architectures. The QM sort comprises two phases: the initial phase organizes the
chunks, while the subsequent phase merges the sorted pieces. In the initial step, the authors introduced
a parallel fast sort algorithm designated as BPQsort. The execution time of BPQsort improved by
40%-50%, surpassing that of QM sort. The execution time of QM-sort is 10%-15% more efficient than
rapid sort with OpenMP.

Quicksort is a more efficient sorting algorithm than heap sort and merge sort, while having a
worst-case time complexity of O(n2). The authors [33] analyze the time complexity of Quicksort and
juxtapose it with the enhanced bubble sort and Quicksort algorithms. Upon analyzing the comparison
of Quicksort, the programmer can determine to minimize the code size and enhance its efficiency.

Sorting constitutes a significant area for research. The sorting challenge motivated the researcher
to do the study. The author [34] introduced a novel sorting method known as the SMS algorithm
(Scan, Move, and Sort). The suggested technique enhances standard Quicksort by improving the time
complexity in the best, average, and worst-case scenarios for big data sets. The proposed SMS was
compared with Quicksort, yielding good results.

Jiang and Zhou [35] present the formal specification of insertion sort and employ Isabelle/HOL to
verify the algorithm’s validity. The authors juxtapose the value-based and index-based methodologies
for formulation. The study concludes that the index-based method is better appropriate for validating
all facets.

Shin et al. [36] present the development of the Anchor-based Insertion Sorting Algorithm for OS-
CFAR (Constant False Alarm Rate). The created scheme employs a linked list structure to represent
the sequential organization of various featured models. The proposed scheme lowered the computing
burden.

Ibrahim [37] presents an enhanced version of the classic insertion sort that offers improved per-
formance across several applications. Incoming data has been progressively received and promptly
analyzed to determine its finality or necessity for dismissal. The ICIS algorithm employed an approach
analogous to the binary search algorithm to determine the location of incoming input. ICIS is an
in-place sorting algorithm with a complexity of O(n log n). The proposed technique conserves time
and space relative to the conventional one.
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Barfeh et al. [38] examine the notion of Insertion Sort and address a sorting difficulty in Mem-
brane Computing. The authors analyzed the similarities between a theoretical computational system
and membrane computing, which does the fundamental task of sorting. The authors introduced the
ambiguous reproduction instruction, enabling each membrane to copy an additional membrane with a
similar structure to the original. The authors ultimately delineated the sorting operation as a series of
transactions done in four distinct stages, each comprising various steps as shown in Figure 1.

Figure 1: Execution Time.

5 Proposed Methodology

5.1 Proposed Preprocessing Method for Quicksort

Quicksort employs a recursive algorithm with a divide-and-conquer methodology for data sorting. The
worst-case temporal complexity of quicksort is O(n2). The optimal scenario in quicksort is virtually
unattainable, as it necessitates a median value positioned centrally inside the input list. A compre-
hensive experimental research indicates that quicksort requires data to be in random order for optimal
performance. Regarding ascending and descending order, Quicksort is ineffective as it lacks adaptabil-
ity and incurs significant expenses owing to many comparisons.

This study introduces a preprocessing strategy, or shuffling, for quicksort to eliminate additional
comparison costs and to randomize the input list, so transforming the worst-case scenario of quicksort
into the average situation. Quicksort is most effective when data is presented in a random order; thus,
a preprocessing technique is employed to randomize the input data prior to executing the original
quicksort algorithm.

The suggested preprocessing technique comprises two phases. In the initial phase, the two halves
of the input list are rearranged in a random order, and random indices are selected from 0 to the
midpoint for the first half of the array and from midpoint + 1 to the maximum index for the second
half of the array, with each element being substituted by the generated random index. In the second
step of preprocessing, random numbers are selected from the entire list.

Two random indices are picked from 0 to midindex using the rand() function, a random number
generator in C++. The value at the first random index is replaced with the first element, and the
value at the second random index is replaced with the last element. This method executes n/2 times,
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Algorithm 3 Proposed Preprocessing Algorithm for Step 1
1: low = 0
2: upper = n/2 - 1
3: for i = 0 to n/2 do
4: b = (rand() % (upper - low + 1)) + low
5: temp = a[i]
6: a[i] = a[b]
7: a[b] = temp
8: end for
9: low = n/2

10: upper = n - 1
11: for i = n/2 to n do
12: b = (rand() % (upper - low + 1)) + low
13: temp = a[i]
14: a[i] = a[b]
15: a[b] = temp
16: end for

Algorithm 4 Proposed Preprocessing Algorithm for Step 2
1: for i = 0 to n/2 do
2: b = rand() % n
3: b2 = rand() % n
4: temp = a[i]
5: a[i] = a[b]
6: a[b] = temp
7: temp = a[b2]
8: a[b2] = a[maxindex]
9: a[maxindex] = temp

10: maxindex = maxindex - 1
11: end for
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replacing input elements on each iteration utilizing arbitrary index values. This proposed technique
will have a cost of O(n/2).

5.2 Proposed Preprocessing Method for Insertion Sort

Insertion sort is among the earliest sorting algorithms. Insertion sort is optimal for data that is nearly
sorted. The temporal complexity of insertion sort in both worst and average case scenarios is O(n2)
[39]. This work introduces an innovative preprocessing strategy to enhance the efficiency and reduce
the execution time of insertion sort. The fundamental objective of this preprocessing is to render the
list nearly sorted to the greatest extent feasible, as it is a recognized fact that insertion sort operates
efficiently on nearly sorted data. The suggested preprocessing technique comprises four phases.

5.2.1 Step One: Preprocessing

In the suggested preprocessing, the initial element of the input list is compared with the last element,
and a swap is executed if necessary. Likewise, the second element is juxtaposed with the penultimate
piece, and so forth. These preprocessing costs O(n/2).

Algorithm 5 Step 1: Pseudocode
1: for i = 0 to n/2 do
2: if a[i] > a[maxindex] then
3: temp = a[i]
4: a[i] = a[maxindex]
5: a[maxindex] = temp
6: maxindex = maxindex - 1
7: end if
8: end for

5.2.2 Step 2: Preprocessing

In the suggested preprocessing technique of step 2, during the initial segment (from index 0 to midin-
dex), the first element of the input list is compared with the last element of this segment (the mid
element), and a swap is executed if necessary. Likewise, the second element of the initial half is
juxtaposed with the penultimate element of the initial segment, and so forth. The expense of this
preprocessing is O(n/2− 3) comparisons.

The technique is identical for the opposite half, specifically from the mid+1 index to the maximum
index. The expense of this preprocessing is O(n/2− 3) comparisons.

5.2.3 Step 3: Preprocessing

In step 3, the loop initiates from n/4 and executes up to n/4 − 1, doing exchanges of numbers as
necessary. This will incur a cost of O(n/4 + 1).

5.2.4 Average Case Analysis

The average case time complexity of insertion sort is O(n2). The preprocessing of insertion sort involves
positioning smaller values at the beginning and larger numbers at the end, resulting in an average-case
complexity of O(n2). The rationale behind this is that preprocessing renders the input nearly sorted,
thereby enhancing the efficiency of insertion sort. Consequently, the execution time demonstrates an
improvement exceeding 50%. Thus, when the original time complexity is O(n2), and after achieving a
reduction of over 50% in time, the proposed time complexity is less than O(n2).
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Algorithm 6 Step 2 Pseudocode
1: for i = 0 to midIndex do
2: if a[i] > a[midIndex] then
3: temp = a[i]
4: a[i] = a[midindex]
5: a[midindex] = temp
6: midindex = midindex - 1
7: end if
8: end for
9: for i = midindex + 1 to maxindex do

10: if a[i] > a[maxindex] then
11: temp = a[i]
12: a[i] = a[maxindex]
13: a[maxindex] = temp
14: maxindex = maxindex - 1
15: end if
16: end for

Algorithm 7 Step 3 Pseudocode
1: mid2 = midindex
2: for i = n/4 to midpoint/2 do
3: mid2 = mid2 + 1
4: if a[i] > a[mid2] then
5: temp = a[i]
6: a[i] = a[mid2]
7: a[mid2] = temp
8: end if
9: end for
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Figure 2: Enhanced insertion sort.

6 Experimental Setup

Insertion sort, enhanced insertion sort, and insertion sort with preprocessing have been executed in the
Java IDE Eclipse, while Quicksort with proposed methodologies has been implemented in the C++
IDE Dev C++ version 5.11, utilizing an Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz, equipped with
8GB of installed memory, 64-bit architecture, and running on Windows 10, employing an array data
structure. We are evaluating the total time taken by each sorting algorithm in seconds to sort up to
200,000 numbers for comparison purposes as shown in Figure 2.

7 Results and Analysis

Sorting algorithms are undeniably crucial, as they are essential for the search process. Numerous
computer scientists have introduced novel and improved sorting algorithms; nevertheless, this study
introduces a new idea of preprocessing. Most sorting algorithms yield superior results when provided
with specific types of input; hence, we can employ pretreatment functions on data to enhance the
efficiency of sorting methods. To enhance the efficiency of some sorting algorithms, we have developed
preprocessing approaches that prepare the data in the required format prior to algorithm application.
We have presented preprocessing strategies for two established and well-known sorting algorithms:
rapid sort and insertion sort, as empirical proof.

Utilizing the quicksort preprocessing method, we have transformed its worst-case scenario into an
average-case outcome. Likewise, by employing the insertion sort preprocessing technique, we have
transformed its worst-case scenario into the best situation and enhanced the average case of insertion
sort. The execution time results of the original algorithms utilizing preprocessing techniques are
presented below.

The findings demonstrate that the Enhanced Insertion Sort (EIS) introduced in [22] requires more
time than the original insertion sort algorithm; however, our proposed preprocessing strategy outper-
forms both the original insertion sort and Enhanced Insertion Sort regarding execution time.
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Table 1: Comparison of Execution Time between Quick Sort and Proposed Preprocessing

Input Numbers 100,000 150,000
Input Category Sorted Random Reverse Sorted Random Reverse

Sorted Sorted
Quick Sort 22.891 0.0140510 19.6165 40.381 0.0329121 42.3126

Quick Sort with 0.0199917 0.0199721 0.019974 0.029974 0.0439865 0.0299727
preprocessing

Table 2: Comparison of Execution Times for Insertion Sort, Enhanced Insertion Sort, and Insertion
Sort with Preprocessing

Input Numbers 100,000 150,000
Categories Best Random Worst Best Random Worst

Insertion Sort 0.035 1.505 1.689 0.06 4.729 4.911
Enhanced Insertion Sort 0.006 3.504 4.738 0.007 9.765 10.828

Insertion Sort with 0.011 0.914 0.009 0.019 1.989 0.013
Preprocessing

8 Conclusion

Computer researchers are developing more efficient sorting algorithms, and employing pretreatment
procedures is a fresh method to enhance algorithm performance. Employing these preprocessing tech-
niques on input data prior to implementing a sorting algorithm might significantly reduce execution
time. We have conducted a comparison between known sorting algorithms (Insertion Sort and Quick-
sort) and the proposed preprocessing techniques, and the results have been examined. The findings
obtained demonstrate the efficacy of the recommended preprocessing procedures. We have mathemat-
ically demonstrated that the time complexity of the suggested preprocessing insertion and quicksort
has been lowered compared to existing sorting methods. The authors want to create more efficient
preparation approaches for insertion sort, rapid sort, and more sorting algorithms in future work.
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