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signal-to-noise ratio (SNR), and model-based reconstruction. The objective of each system is to en-

Wiener filter, Perceptual hance the perceived quality of the speech estimations. The efficacy of
Evaluation of Speech Quality numerous speech processing applications is significantly compromised in
(PESQ) the presence of both noise and reverberation. The proposed approach

has been evaluated in a simulation environment, and the results in-
dicate that voice enhancement can be effectively achieved through its
integration. This study proposes two-stage noise reduction systems to
diminish background noise in single microphone recordings with low
signal-to-noise ratios, utilizing perfect binary masking and Wiener fil-
tering techniques. It comprises two stages. Initially, a Wiener filter
with an improved signal-to-noise ratio is employed for the reduction of
background noise in noisy speech. Secondly, IBM is computed in each
time-frequency channel by utilizing the pre-processed speech from the
initial stage and aligning the time-frequency channels to a predeter-
mined threshold to minimize residual noise. The channels that meet the
threshold criteria are preserved, while all others are diminished.

1 Introduction

Hands-free cell phone use is currently seen as conventional due to its various capabilities, including
automated speech recognition, hearing aids, and voice communication devices. In this context, the
acquisition of pristine audio from both proximal and distal microphones is essential for developing
high-quality speech-based systems. The issue of background noise and echoes results in the attenuation
of microphone voice signals. In multisource conditions, more discourse sources are accessible, rendering
the issue further testable. Such issues prompted the investigation of single network voice enhancement
methodologies. This research formulates optimal spectral methods for enhancing single network voice
in multisource environments, leading to improved quality and clarity of distorted speech.

Signal processing encompasses various sub-disciplines. Audio signal processing is a subfield that
focuses on the electronic manipulation of audio signals. Audio signal processing can be utilized in both
analog and digital formats of audio. In analogue audio signal processors, the audio signal represents a
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variant of an electric signal is utilized, but digital audio processing operates on a digital representation
of that same audio signal. In audio signal processing, digital audio signals are transformed into analog
signals and vice versa. Throughout the process, we can adjust the frequency of the specified signal.
Advancements in technology now enable audio processing on a standard family PC.

Verbal communication is one of the most conventional and efficacious modes of interaction. Ini-
tially, spoken communication necessitated face-to-face connection; but, with time, telephones were
introduced. Telephones enabled individuals to converse verbally over great distances. Over time, the
demands of communication expanded, resulting in significant advancements in telecommunication, ul-
timately culminating in the development of wireless communication devices, which were further refined
into cellular communication. Currently, mobile phones are an essential component of our existence. To
guarantee the efficient and seamless transmission of audio via our communication systems, digital au-
dio signal processing is employed. Our latest communication devices’ capacity for efficient complicated
computation has enabled the integration of increasingly sophisticated audio processing algorithms into
the system.

Given that speech is regarded as a direct mode of communication, it is evident that it serves as an
exceptional instrument for human interaction [II, 2]. An algorithm executed by a computer software is
employed in automatic speech recognition (ASR) technology to convert a speech signal into a sequence
of words.

The primary objective of voice enhancement is to reduce the noise component of the signal while
preserving the integrity of the original signal. To date, extensive research has been undertaken on
speech augmentation. Nonetheless, the issues of persistent noise manifesting as musical tones and
distortions in the underlying signal remain unresolved. A multitude of studies have been conducted
to tackle the difficulties, achieving varying degrees of success in each research endeavor. Furthermore,
de-noising methods are employed to minimize distortion in a signal while recovering the original signal.
This is, nonetheless, a complex process. The presence of noise in a system, whether in the time domain
or frequency domain, complicates the removal of distortion from the original signal. The process of
eliminating noise from a speech stream is referred to as speech enhancement. The frequency domain is
favored for this approach because to the extensive work conducted in this mode, allowing us to leverage
a century of prior study.

The distinctive spectral subtraction method eliminates a noise floor irrespective of the noise fre-
quency distribution. It has facilitated the development of advanced noise reduction algorithms [5, [6],
which utilize a frequency-dependent gain function in the spectrum to mitigate noise. Numerous speech
models function in the frequency domain, leading many speech augmentation techniques to depend
on parameters derived from the predicted frequency spectra of the input data, with the accuracy of
these estimates influencing their efficacy. Short-time spectral amplitude (STSA) augmentation algo-
rithms have been employed in many research to significantly diminish musical noise and enhance the
overall quality of the processed speech [4 [7, 12]. The signal subspace (SSB) technique [I0] employs
low-variance multitier spectral estimates (MTSE) [13] to generate speech spectra devoid of musical
noise.

The utilization of hands-free cell phones has become standard thanks to features such as auto-
mated speech recognition, hearing aids, and voice communication devices. Within this paradigm, the
acquisition of pristine audio from both proximal and distal microphones is essential for developing
high-quality speech-based systems. The issue of background noise, particularly from echoes, leads to
the attenuation of microphone voice signals. In multisource conditions, additional discourse sources
are accessible, rendering the issue more testable. Such challenges stimulated research on single network
voice enhancement methods. The project aims to establish appropriate spectral methods for enhancing
single network voice in multisource environments, leading to improved quality and clarity of distorted
speech as shown in figure[I] In voice recognition, the primary research concern is the extraction of dis-
criminative and salient features from speech signals. Several conversation features have been proposed
in the literature to facilitate this process. The challenge in this scenario is to accurately incorporate the
four categories: language-related characteristics (words and discourse), context-related details (such
as subject, sexual orientation, and turn-level highlights pertaining to local and global aspects of the
exchange), hybrid features that amalgamate acoustic attributes with other information, and acoustic
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Figure 1: Speech Enhancement Single Channel Mechanism.

characteristics themselves. Two essential considerations are necessary for the development of recogni-
tion systems. They represent a selection of relevant highlights that encompass significant information,
easily identifiable by any categorization methodology. the appropriate selection of assessments for de-
veloping a model of an arrangement. The accompanying sign elements that directly affect the discourse
acknowledgment framework must be considered by discourse analysis approaches. The inter-speaker
variations in discourse facilitate the optimal development of a characterisation model, resulting in a
vast array of possible articulations without definitive validation of the most effective selections.

The application of low-variance and smooth autoregressive multitier (ARMT) spectral calculations
in STSA-type speech enhancers effectively obviates the necessity for additional wavelet de-noising [§].
Reference [I4] illustrates that meticulous attention to phase can lead to substantial enhancement and
a decrease in musical noise, challenging the prevalent notion that the ear is indifferent to the phase of
a signal.

This research is motivated by the increasing demand for efficient speech communication systems.
This trend is expected to expand as human-machine interaction gains popularity. The improvement
process has four stages. Initially, employing time-domain methodologies, noise-affected speech is seg-
mented into two short temporal intervals. Secondly, the FFT is employed to convert each frame into
the frequency domain. This is referred to as the analysis step of the technique. Third, a noise-reducing
filter is generated for each frequency band and applied to the STFT coeflicients to approximate a
clear speech spectrum. Ultimately, an inverse FFT is employed to generate the enhanced speech in
the temporal domain from the approximate clean speech spectrum (IFFT). This voice enhancement
architecture processes various frequencies individually and is computationally efficient. This provides
significant flexibility in utilizing noise data and our comprehension of speech perception to enhance
performance. This approach has garnered significant interest recently in discussions on the speech
enhancement process as shown in figure 2] Furthermore, all these previous examples suggest a specific
correlation between spectral estimate and the quality of the augmented speech. Recent analytical
investigations have examined the aforementioned correlations, as detailed in works [9] 111, 12} 13]. This
research employs the method outlined in [14], but expands it into a two-stage system. The current
approach inadequately resolves the noise issue for audio signals. The signal’s quality is significantly
compromised after traversing the initial stage. The implementation of the Weiner filter as the sub-
sequent stage will yield more noise reduction, as required for real-time filtering. To our knowledge,
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Figure 2: Auto Speech Recognition System.

no such strategy exists in the literature, and we believe our method will contribute significantly to
the study community due to its uniqueness. We are confident that by implementing the proposed
method and integrating it with additional filtering techniques, it will establish a standard for future
enhancement systems employed as front-ends for ASRs.

The objective of the project is to provide single-source enhancement approaches that are resilient
to significant amounts of interfering noise and appropriate for real-time application. This research
proposes a dual-stage noise reduction system utilizing the Wiener filter to mitigate noise. The procedure
will employ an improved signal-to-noise ratio to reduce the frame interval utilizing Ideal Binary Mask
(IBM) [7] and a decision-directed methodology [4]. IBM is shown by correlating SNR assessment with
a 0 dB benchmark. IBM utilizes access to local instantaneous SNR instead of a priori SNR, which
is defined as the ratio of the speech power spectrum to the noise spectrum at each time-frequency
(T-F) unit. The efficacy of the proposed system is subsequently assessed by analyzing the attributes
of residual noise and speech distortion in relation to two specific intruder noises (AWGN and babble).

2 Related Literature

Noise reduction systems are widely employed in telecommunications to enhance the quality of speech
communication in noisy environments. Although enhanced noise reduction can be achieved through
the use of a microphone array system, most of these systems rely on a single microphone for economic
reasons.

A singular mouthpiece noise reduction system fundamentally employs flexible separation mecha-
nisms to attenuate time-frequency (T-F) units of loud speech with low signal-to-noise ratio (SNR)
while preserving T-F units with high SNR. Consequently, fundamental regions of communication are
preserved while the noise level is substantially reduced, resulting in enhanced dialogue with diminished
auditory interference. Numerous frameworks for reducing incalculable commotion are documented in
the literature [7, 8, [9]. By minimizing the mean square error between the assessed/enhanced signal
and the original signal, the Wiener channel [10, [IT] serves as a direct channel for recovering distinct
discourse motion from the noisy signal. In Wiener separation, the determination of which T-F unit
of loud speech should be attenuated and to what extent is conducted through the use of certain at-
tenuation rules. The majority of these weakened recommendations are revised to align the enhanced
discourse as closely as possible with the ideal discourse.

The characteristics of single receiver noise reduction systems are unequivocally governed by the
concealment rule. A stringent concealment regulation will result in a quieter discourse. Nonetheless,
substantial reduction yields greater distortion. Moreover, a judicious constriction exhibits reduced
twisting while achieving a limited degree of noise reduction. A comprehensive literature review on
time-recurrence is available in [12]. Philosophies with dual covers have revealed significant quality en-
hancements even at minimal SNRs with reduced distortion. These optimistic results have reinvigorated
analysts to develop and assess double covers, proposing it as the goal of computational auditory scene
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analysis (CASA) [12]. With these confirmations of worth and clarity enhancement, inquiries have been
conducted in the recent past to assess these coverings |13 [14], [15].

In recent years, advancements have primarily focused on automatic speech recognition; however,
achieving robust and precise speech recognition remains a challenging problem due to factors such as
content variation, speaker differences, and environmental distortions. A significant obstacle in speech
recognition is pronounced speaker variability. The ongoing interchange of ideas is influenced by the
speaker’s emotional state and unique characteristics. Consequently, the principal source of speech is
identified by the autonomous manner of the speaker.

The standard feature known as MFCC has lately been employed for speaker identification. The
MFCC cannot derive significant feature values from the speech stream when extraneous noise is present.
Developing a noise-adaptive classification algorithm for voice recognition in acoustically challenging
conditions is more complex. The primary issue with these tactics is that they require precise assump-
tions on information transfer and model parameters. Most discourse management systems in writing
employ Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM) for the concurrent
characterization of emotions.

GMM-UBM was employed for classification; nevertheless, this approach is ineffective in noisy envi-
ronments. GMM-UBM requires uniform training with an increased number of data samples. Further-
more, neural system-based organizational models require extensive pre-processing of input for improved
categorization, whereas acoustic models have challenges in managing low-level components, proximate
demands, and inherent traits as shown in figure[3] Single-channel speech augmentation algorithms were
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Figure 3: Speech Classification.

evaluated using objective quality and intelligibility metrics, utilizing a Turkish speech database. At
SNR levels of -10, -5, 0, 5, and 10 dB, car and babble noise types interfere with the pristine 30 sentences
from the METU database. Analysis of segmental SNR, enhancement, weighted spectral slope, short-
time objective intelligibility metrics, and spectrogram visualizations reveals that the Karhunen-Loeve
Transform surpasses alternative methods in quality and efficacy [24, [25]. An improved single-channel
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blind source separation nonnegative matrix factorization (NMF) technique for speech enhancement
can be achieved by incorporating a time correlation term in the objective function to regulate the
time-varying gain coefficients of noise [26], 27].

A speech enhancement technique is presented in [28, 29]. The speech enhancement method com-
prises: estimating the speaker’s direction using an input signal, generating directional information
indicative of the estimated direction; detecting the speaker’s speech based on the directional estima-
tion; and enhancing the speaker’s speech utilizing the directional information derived from the speech
detection results [30].

3 Research Objectives

The objective of the research is to present spectral approaches suitable for single-channel speech en-
hancement in multi-source environments, aimed at improving the quality and intelligibility of degraded
speech.

This research analyzes voice quality evaluation to ascertain the extent of speech compression and the
degree of contaminant removal. The quality evaluation metric is specifically designed to facilitate the
comprehensive examination of speech quality through perceptual evaluation (PESQ) during the entire
process. This research and observations [8] employed the Perceptual Evaluation of Speech Quality
(PESQ), as recommended by ITU-T based theory and simulation. The data will be analyzed and
quantified in the subsequent section.

This study examines a two-stage noise reduction technique designed to diminish background noise
in single microphone recordings with low signal-to-noise ratios, utilizing perfect binary masking and
the Wiener filter. Our proposed system has two phases. Initially, a Wiener filter with an improved
signal-to-noise ratio is employed for background noise reduction in noisy speech. Secondly, IBM is
computed in each time-frequency channel by utilizing the pre-processed speech from the initial stage
and aligning the time-frequency channels to a predetermined threshold T to minimize residual noise.
Time-frequency channels that match the threshold requirement are preserved, while all other channels
are meticulously muted.

Furthermore, it becomes increasingly difficult when acoustic waves emanate from sources with anal-
ogous spectral properties. This algorithm will effectively resolve critical challenges in speech processing
applications without compromising speech quality and intelligibility.

This research illustrates the effective application of several speech processing technologies function-
ing in loud situations.

4 System Model

Speech enhancement presents a formidable challenge in noisy environments, particularly in multisource
settings, because to the variability in quality and characteristics of noise over time and between different
applications. Consequently, it is challenging to identify effective single-channel speech enhancement
algorithms that perform reliably in diverse practical conditions, resulting in significant degradation of
voice quality and intelligibility.

In single-channel algorithms, the reduction of noise (enhancement of quality) may occur at the
expense of speech distortion (diminution of clarity). Consequently, it is challenging to implement both
measures concurrently. This investigation aims to develop a single-channel speech enhancement algo-
rithm that minimizes noise while preserving speech coherence with little distortion. Various measures
can be employed to evaluate the implementation of the speech enhancement framework. These are
available in two formats: objective and abstract. A variety of approaches exist for target tests, such
as the PESQ measure, the IS, or the addition of SNR levels. Abstract testing can also be employed
for evaluations conducted with the assistance of human evaluators and is widely regarded as the most
effective way for measuring the performance of speech enhancement algorithms [22].

The process commences with the framing mechanism. Every 10 milliseconds, a Hann-windowed
frame of 30 milliseconds is retrieved for audio signal processing. The discrete Fourier transform (DFT)
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of each audio frame is initially transformed into a block of the logarithmic magnitude spectrum or
truncated spectrum of autocorrelation. The logarithmic spectrum represents a frequency transforma-
tion of the actual spectrum, specifically the inverse Fourier transform. A truncated spectrum is a
refined representation of the original logarithmic spectrum, retaining just the lower-order coefficients.
We choose to retain the initial J = 50 spectral coefficients at the 44100 Hz sampling rate utilized for
this study, adhering to the standard guideline of truncating the spectrum to a length less than the
anticipated pitch period. Three SNR levels—-5, 0, and 5 dB—were employed to assess performance as
shown in figure [4]
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Figure 4: Proposed Model for the Scheme.
4.1 Mathematical Modeling for Noise Reduction Systems
In classical terminology, the equation representing noisy speech in any context is as follows:
y(t) = s(t) + e(t) (1)

where s(t) denotes the original noise-free speech, while e(t) signifies the noise itself. Let Y (m,wp,),
S(m,wp,) and E(m,w,,) denote the wy,, spectral component of frame m of the noisy speech signal
y(t). Both noise and speech exhibit non-stationary characteristics; yet, they are presumed to be
stationary over brief intervals (9-32 ms). Therefore, it is presumed that both entities exhibit quasi-
stationary characteristics. The spectral gain is integrated into the calculation of two fundamental SNR
evaluations, posteriori and a priori, represented by:

m., w 2
m., W 2
(s ) = 'S(m)') 3)

where E{.} denotes the expectation operator, and os(m,wy,) and o.(m,w,,) represent the a pos-
teriori and a priori signal-to-noise ratios, respectively. In real-time applications, the Power Spectral
Density (PSD) of clean speech |S(m,wy,)|? and the noise |E(m,w,,)|? remain undetermined, as only
the noisy speech is available. The power spectral density of noise is computed via speech gaps utilizing
the conventional recursive relation:

&g(m,wm) = aé)’g(m — 1wy +(1— oz)|Y(m,wm)|2 (4)
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where, a denotes the smoothing factor and 62(m — 1,w,,) represents the estimate derived from the
current frame. Both the signal-to-noise ratios (SNRs) are calculated as:

_ Y (m, w)[? _

YINSTANT (M, Wiy ) = 1 (5)

o2 (m,wm,)

’G(m - 17wm) i Y(muwm)P
o2 (m,wpm,)

EpRio (M, wm) = 8 + (1 — ) max{ymMEDIATE (M, W) — 1,0} (6)

Where £PP;(m,wp,) denotes the computation of a priori signal-to-noise ratio (SNR) via the
decision-direct (DD) method. DD is computationally efficient and demonstrates significant efficacy
in noise reduction assertions. Nonetheless, in this procedure, the a priori SNR follows the configu-
ration of the instantaneous SNR, resulting in a one-frame deferral. The noisy speech Y (m,w,,) is
processed by multiplying it with the Wiener filter gain function, resulting in:

Sest(m,wm) =Y (m,wn) - GDD(m,wm) (7)

The square root of the Wiener gain function is calculated as specified by the equation:

DD
GPP (1m0, wp) = D%Rlo(mawm) (8)
Eprio (M, wm) +1

To mitigate residual noise, the ratio of the estimated magnitude spectrum to the clean speech
(|S(m,wm)|/|SEsT (M, wr)|) is evaluated against a predetermined threshold T. T-F units that comply
with the constraint, specifically (|S(m,wm)|/|SEsT(m,wn)|) > T, are maintained, while those that
contravene the constraints are diminished. The adjusted magnitude spectrum Sy, (m,wy,) is computed

as follows:

SM(m7 Wm) =

{SEST(m,wm) if | St (m, wim) |/ 1S (m, win)| > T o)

0 if |SgsT(m,wm)|/|S(m,wn)| < T

A variety of objective metrics established in the literature for evaluating the efficacy of noise re-
duction technologies encompass PESQ-MOS and segmental signal-to-noise ratio (SNRggg) [25]. The
PESQ-MOS metric has been tested to yield a strong association with MOS, producing scores ranging
from 1 to 5, where a higher number signifies superior speech quality. Similarly, SNRsgc is a widely uti-
lized objective metric that demonstrates optimal correlation in noise reduction. SNRggq is delineated
as follows:

|S(m, wm)|?

(ma wm) - SEST (m, wm)|

(10)

10 M-1
SNRsgg(m,wm) = i Z logg S 5
m=0

where S(m,wy,) and S(m,w,,) represent the frames of clean and estimated speech, respectively.
To eliminate non-speech frames, each frame was subjected to a threshold of 0dB as the lower limit and
-35dB as the upper limit. Consequently, ITU-T Recommendation P.835 is employed to assess speech
distortion and residual noise. The P.835 measure is developed by correlating fundamental objective
measures to create a composite measure [10] as shown in figure

Csig = 3.093 — 1.029 - SL + 0.603 - SP — 0.009 - SWS (11)
Chak = 1.634 4+ 0.478 - SP — 0.007 - SWS 4 0.063 - SSNRsgq (12)
5 Results and Analysis

Due to temporal variations, several tools and procedures have been devised, and it is indicated that
thorough testing of the suggested solution is essential to ascertain its superiority over the existing
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Figure 5: Mechanism for Noise Reduction.

answer. Optimal results can be achieved by the application of appropriate testing methodologies. The
testing process is challenging, and in this segment of the research, we examined the novel approach
of a binary mask. The proposed approach considers two testing parameters: augmentation of speech
intelligibility and the quality of synthesized speech, aimed at improving overall quality and throughput.

Objective assessment and precise measurement values are employed to evaluate and validate the
performances and to estimate the computations of the specified speech enhancement algorithms using
compression algorithms and techniques. The PESQ method is selected as an ITU-T recommendation,
superseding the obsolete ITU-T recommendation, which was grossly insufficient for its intended purpose
and remains unsuitable for eliminating distortion caused by undesirable frequencies. The [20] theory
encompasses the relevant theoretical material pertaining to PESQ. The PESQ scores run from -0.5
to 4.5, but the output range adheres to the MOS, or mean opinion score, which begins at 1.0 and
culminates at 4.5. Aggregate data suggests advancement, and conversely. The primary and most
prevalent method for assessing the efficacy of speech enhancement approaches and implementations,
as illustrated by suitable flow charts, is the objective measure grounded in Signal-to-Noise Ratio
(SNR). The mean ratios, derived from the entire non-stationary signal, and the rapid fluctuations of
speech signals indicate that the SNR-based estimation not only precisely represents speech quality for
compression but also demonstrates a robust correlation with speech quality. The Signal-to-Noise Ratio
(SNR) should be assessed in small packets of minor components, followed by the estimation of their
mean for the identification of segmental or fragmental SNR (SNRgeg) [12].

The performances and results of the specified algorithms and the foundation of the approaches’
development are presented in Table|l|appropriately. The proposed algorithm and methods demonstrate
a significant and discernible improvement in PESQ phenomena across all signal-to-noise ratio estimates
and noise conditions, even in the presence of undesired frequencies that cause signal distortion and
contamination. The 5 dB street noise NRPCA (PESQ=1.15) exhibits the greatest enhancement, whilst
the 5 dB babbling noise (PESQ=0.42) demonstrates the least improvement. The exhibition hall yielded
the greatest PESQ ratings at noise levels of 0 dB, 5 dB, and 10 dB for analysis as shown in figure
[l APESQ values are 2.86, 3.13, and 3.31, respectively. The PESQ score increased from 2.02 with
LMMSE to 2.72 with the proposed approach (APESQstreet=0.71) in street noise at 0dB. The PESQ
score increased from 2.20 with subspace to 2.69 with the suggested approach (APESQpabble=0.49)
for 5dB bubble noise. The PESQ score increased from 2.39 with NRPCA to 3.31 with the proposed
approach (APESQExhibition ha11:0~92) at 10 dB.

The most significant enhancement is 10 dB at the airport (ABAKairport=3.35), whilst the least
is 0 dB, corresponding to babble noise (ABAKpapble=2.68). The SIG segmentation scores increased
from 4.28 in the Exhibition Hall utilizing the suggested algorithm (ASIGgxhibition Hall = 4.28) at 10dB,
whilst the lowest score recorded is 3.65 in street means (ASIGggreet = 3.65) at 0dB.

The proposed voice enhancement in Table [4] exhibits time complexity, signifying the duration
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Figure 6: Flowchart for the Technique.

required for the algorithm to execute fully. The database’s 30 combinations, exhibiting a total run-
time of 150 seconds, were analyzed. Table [] illustrates that techniques devoid of training execute
significantly more rapidly than those that incorporate it (DNN). For example, NRPCA necessitates
20.5 seconds to process a single speech with a specified SNR level (assuming 0dB). The runtime for 30
utterances is calculated as 20.5 multiplied by 30, equating to 615 seconds. The cumulative duration
needed by NRPCA to produce increased voice utterances is 3075 seconds over five SNR levels (0dB,
5dB, 10dB) when the RT is multiplied by a factor of 5. The proposed approach necessitates 10 seconds
to execute fully for a single syllable at a specific SNR level. The proposed method exhibits a temporal
complexity of 1500 seconds, signifying its rapid convergence relative to alternative approaches.

The spectrogram samples demonstrate the effectiveness of all processing algorithms and enhance-
ment strategies to improve signals. Upon examining the spectrograms of the signal processing algo-
rithms for the intended objective, the vocal utterance was obscured by the babbling noise at a 0dB
SNR level. The proposed technique excels in mitigating or eradicating background noise and unwanted
frequencies while purifying speech from polluted frequencies.

6 Conclusion

This study proposed a two-stage noise reduction system. The initial step involves applying a Wiener
filter to the loud voice to enhance the signal-to-noise ratio for background noise attenuation. To
diminish residual noise, IBM is computed in each time-frequency channel utilizing the pre-processed
speech from the initial stage and aligning the time-frequency channels to the predetermined threshold
T. This approach will resolve critical challenges in speech processing applications without compromising

ID: MLHI/V21-14 40



Machine Learning for Human Intelligence Vol. 2, Issue 1

Table 1: PESQ evaluations in diverse acoustic situations

Type of Noise Approaches | 0 dB | 5dB | 10 dB
LMMSE 2.06 | 2.34 | 2.63
Subspace 1.91 | 233 | 2.61
NRPCA 1.69 | 3.14 | 5.84
Proposed 3.34 | 499 | 6.19
LMMSE 241 | 4.10 | 5.69
Subspace 2.15 | 428 | 6.03
NRPCA 1.51 | 3.21 | 5.03
Proposed 3.0 | 445 | 6.73
LMMSE 1.66 | 3.93 | 6.08
Subspace 1.13 | 4.28 | 5.40
NRPCA 1.56 | 3.30 | 5.53
Proposed 3.35 | 4.91 7.23
LMMSE 1.84 | 3.56 | 5.13
Subspace 148 | 3.45 | 5.46
NRPCA 1.49 | 3.35 | 5.47
Proposed 2.95 | 4.60 6.8
LMMSE 2.16 | 4.34 | 5.71
Subspace 2.44 | 4.78 | 5.71
NRPCA 1.49 | 3.95 | 5.21
Proposed 3.69 | 4.83 | 7.36

Airport Noise

Car Noise

Street Noise

Babble Noise

Exhibition Hall

Table 2: Statistical Analysis of Residual Noise and Speech Distortion Using ANOVA

Residual Noise Assessment (BAK)
Type of Noise | SNR (dB) | Un-P | Wiener filter | Stage One | Proposed BAK
0 1.58 2.08 2.21 2.75
Airport ) 1.99 2.32 2.39 3.03
10 2.48 2.86 2.98 3.35
0 1.58 2.06 2.23 2.68
Babble 5 1.99 2.41 2.47 2.98
10 2.48 2.85 2.98 3.29
0 1.63 2.19 2.25 2.71
Car 5 1.98 2.41 2.59 3.03
10 2.44 2.84 2.97 3.29
0 1.58 2.09 2.18 2.86
Exhibition Hall ) 1.99 2.47 2.52 3.15
10 2.48 2.68 2.79 3.38
0 1.64 2.09 2.19 2.73
Street ) 2.09 2.47 2.56 3.03
10 2.55 2.68 2.92 3.34

speech quality and intelligibility. Another benefit of this research is the efficient utilization of various
speech processing applications functioning in noisy situations.

Objective assessment and precise measurement values are employed to evaluate and validate the
performance of the specified voice enhancement methods using compression algorithms and techniques.
The PESQ approach is selected as an ITU-T recommendation, superseding the outdated version and
prior ITU-T recommendations, which are inadequate for the intended purpose and fail to effectively
mitigate distortion caused by undesirable frequencies. This investigation utilized the PESQ, as recom-
mended by ITU-T based theory and simulated observations.

Time-frequency channels are pivotal in their domain and have eliminated previous limits. The
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Table 3: Analysis of Speech Distortion (SIG)

Type of Noise | SNR (dB) | Un-P | Wiener | Stage One | Proposed SIG
0 2.51 2.47 2.77 3.77
Airport ) 2.94 2.99 3.28 4.0
10 3.41 3.41 3.69 4.03
0 2.51 2.49 2.63 3.67
Babble ) 2.94 3.00 3.12 3.97
10 3.41 3.47 3.51 4.19
0 2.46 2.72 2.84 3.75
Car 5 2.95 3.24 3.38 4.07
10 3.43 3.86 3.92 4.23
0 2.51 2.44 2.77 3.88
Exhibition Hall ) 2.94 2.98 3.28 4.15
10 3.41 3.27 3.69 4.28
0 2.45 2.41 2.53 3.65
Street 5 2.93 3.08 3.28 3.98
10 3.46 3.61 3.63 4.23

Table 4: Time Complexity Analysis

Method Time per utterance (s) | Total time for 30 utterances (s)
LMMSE 15.2 2280
Subspace 18.7 2805
NRPCA 20.5 3075
Proposed Method 10.0 1500

overall contribution of speech signals to signal-to-noise ratios (0dB, 5dB, and 10dB) utilizing babble and
street noise generators is a fundamental aspect of the suggested method. Nonetheless, advancements
in speech have been documented, demonstrating enhanced intelligibility and clarity, even at low signal-
to-noise ratios, yielding superior results and outcomes.

A significant deficiency is the inadequate implementation of the project methodology, which sug-

gests that selecting the appropriate strategy could yield superior results and increased throughput.
Proactive planning is essential to ensure the project is completed within the designated timeframe
and budget. Various types can be employed to assess the advancement of voice enhancement and
compression systems.
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